List of studies included in the review – related to brain physiology

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
Benuto	Both	-	Numerous	Numerous
2013	genders,			
	Adolescents			
Porter JN	11–13 yrs,	Cross-sectional study.	Numerous	Numerous
2014	15–18 yrs			

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
Telzer EH	-	Longitudinal; Multi-	-	Study 1: Family obligation values are
2013		method, longitudinal		protective, relating to dampened substance
USA		program of research,		use, largely due to the links with decreased
		including daily diaries,		association with deviant peers and increased
		experimental tasks,		disclosure to parents. Study 2: Family
		and neuroimaging, to		obligation values are associated with reduced
		examine the		ventral striatum (VS) activation when receiving
		mechanisms by which		monetary rewards and increased prefrontal
		a culturally		cortex (PFC) activation when inhibiting
		meaningful type of		behavioural responses. Reduced VS activation
		family relationship –		correlates with less real-life risk taking
		familism – buffers		behaviour and enhanced PFC activation
		Mexican youth from		correlates with better decision-making skills.
		drug use and risk		Study 3: Enhanced VS activation when
		taking.		contributing to the family predicts decreases in

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
				adolescents' risk taking behaviour over the
				next year.
Andrews-	Both	Cross-sectional;	Activation in	Adolescents showed less recruitment of a
Hanna JR	genders,	Hybrid block/event-	adolescents vs adults	network of frontal-parietal brain regions than
2011	14–17 yrs	related fMRI stroop	on a Stroop task.	adults during a cognitive control task.
USA		paradigm combined	•	5 5

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		with self-report		
		questionnaires.		
Banich MT	Both	Cross-sectional;	Behaviour and fMRI	Older adolescents tended to choose the
2013	genders,	Questionnaires and	activity in Now vs Later	delayed reward more and were slower when
USA	14–19 yrs	fMRI task of	decisions during	considering an immediate reward. Activity
		participants doing an	intertemporal task in a	across brain regions implicated in aiding in
		intertemporal choice	group of younger	intertemporal choice became more
		task.	adolescents and older	differentiated for Now versus Later choices
			adolescents. Self-	with increasing age during adolescence.
			reported non-immediate	
			thinking.	
Barber AD	Both	Cross-sectional;	Connectivity within and	Only left dIPFC showed differences in
2013	genders, 8–	Resting state	between the Task-	connectivity between groups, with tighter
USA	12 yrs	functional connectivity	positive and Task-	integration with rest of task-positive network in
		MRI (seed-region	negative networks.	adults. Many task-negative regions showed

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		based, 3 regions per		increased within network connectivity in adults,
		network). A Go/No-Go		and also stronger negative connectivity with
		fMRI task.		task-negative regions in adults. There was a
				relationship between response inhibition
				performance and the strength of
				(anti)correlation between those regions that
				showed developmental differences in the task-
				negative network.
Batterink L	Females	Cross-sectional; fMRI	BMI at baseline and at	Participants w/ higher BMI responded slower to
2010		task of go/no-go task	1 year; Neural and	vegetable cues and failed to inhibit responses
USA		with vegetables being	behavioural response to	to desserts. When instructed to inhibit
		a 'go' stimuli and	No-Go/Go trials; ROI	responses to images of appetising foods,
		desserts being a 'no-	analysis of: superior	participants with higher BMI showed less
		go' stimuli. BMI taken	frontal gyrus, middle	recruitment of regions involved in response
		at baseline, and 1-6-	frontal gyrus (MFG),	inhibition and more recruitment of reward

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		and 12-month follow-	inferior frontal gyrus,	regions. However, no behavioural or neural
		ups. Seed region	medial and lateral PFC,	response could predict BMI at the 1-year
		analyses.	inferior parietal lobe,	follow-up.
			insula, operculum,	
			striatum, and	
			orbitofrontal cortex.	
Bava S	Both	Cross-sectional;	White matter integrity;	Decreased integrity of white matter in the
2010	genders,	Structural MRI (DTI);	Several	temporal lobe in adolescents with histories of
USA	16–19 yrs	Neuropsychological	neuropsychological	marijuana and alcohol use was related to
		measures; Substance	measures.	poorer attention, working memory, and
		use questionnaire.		speeded processing. However, users had
				higher white matter integrity in the occipital
				cortex, which was associated with better
				working memory and complex sequencing
				performance.

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
Beltz AM	Both	Longitudinal;	Activation in Go/No Go	Less connectivity between brain networks
2013	genders,	functional MRI.	task and connectivity	involved in emotional processing when
USA	18–19 yrs	Go/No-Go task with	between cognitive	participants responded to seemingly-dominant
		alcohol-related	control and emotional	alcohol cues than when they responded to
		stimuli. Effective	processing brain	non-alcohol cues. After first semester of
		connectivity analyses.	networks.	college, participants recruited cognitive control
				brain network more when they needed to
				overcome a pre-potent response to alcohol
				stimuli and follow 'go' cue instructions.
Bjork JM	Both	Cross-sectional;	Activation by three task	Psychosocial problems correlated positively
2011	genders,	Monetary Incentive	contrasts: 1) high and	with recruitment of the VS and mPFC by cues
USA	12–17 yrs	Delay task	low reward cues vs	to respond for rewards, as well as right NAcc
		administered in fMRI;	non-incentive cues, 2)	connectivity with fronto-cortical structures as a
		Drug Use Screening	high and low loss	function of the presence (versus absence) of
		Inventory (DUSI; a	avoidance cues vs non-	prospective rewards.

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		binary endorsement	incentive cues, and 3)	
		of 149 behavioural	reward-anticipatory	
		and psychosocial	cues versus loss	
		symptoms, including	anticipatory cues, to	
		potentially-rewarding	index a motivational	
		behaviours);	bias toward obtaining	
		Psychophysiological	rewards over avoiding	
		interaction between	losses of equal	
		brain regions.	magnitude.	
			Frontocortical	
			synchrony of time-	
			series signal between	
			reward and neutral	
			conditions with that of a	
			'seed' volume-of-	

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
			interest (placed	
			anatomically) in the	
			bilateral NAcc. Drug	
			Use Screening	
			Inventory Overall	
			Problem Density (DUSI-	
			OPD) score.	
Braams BR	Both	Cross-sectional; Task	Neural activity when	Peak in striatum activity in adolescence when
2014	genders, 8–	fMRI, playing	learning for whom they	winning for self. Reward-related striatal
Netherlands	25 yrs	gambling task for self,	were playing (friend,	response depended on the kind of beneficiary
		friend, and	antagonist or self), and	for all ages. Activity in the mPFC when winning
		antagonist. Friendship	neural activity when	versus losing for antagonists peaked in mid-to-
		quality questionnaire.	seeing the outcome of	late adolescence.
			the gamble (win or	
			lose). Friendship	

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
			quality.	
Braet W	Males	Cross-sectional;	Number of errors of	Unlike what was hypothesised, there were no
2009	adolescents	Compared SART	omission (not going	differences in the ACC between adolescents
Belgium,	10–14 yrs,	performance of adults	when you need to go)	and adults for unsuccessful inhibitions. Adults
Ireland,	but both	and young	and commission (going	had fewer commission errors and fewer errors
Australia	genders for	adolescents to	when you should not	of omission and lower response variability
	adults	understand further the	have), and RT on	compared to adolescents. Response variability
		development of	Go/No-Go trials. Brain	was negatively correlated with activation
		inhibitory control and	activation.	changes in most regions for young
		its associated neural		adolescents. During successful inhibitions,
		networks.		young adolescents showed increased
				recruitment, compared with adults, of a widely
				distributed network, including left (inferior,
				superior and middle) and right (middle and

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
				inferior) frontal gyri, left and right insulae,
				bilateral anterior and posterior cingulate, as
				well as both left and right inferior parietal
				cortex and left and right precunei and cunei.
				Differences in frontal regions disappeared in
				the performance-matched groups.
Burger KS	Females	Longitudinal; fMRI	Neural response in the	They found repeated exposures to the cue
2014		during repeated	caudate, ventral	preceding milkshake receipt was associated
USA		exposures to	pallidum and putamen	with greater caudate responses over time,
		milkshake and	to: 1) cues predicting	whereas the neural response in the putamen
		tasteless solution	milkshake receipt and	and ventral pallidum decreased over time in
		receipt that were	2) receipt of milkshake.	the response to the receipt to the milkshake.
		paired with	BMI.	By tracking the sample of 35 adolescent
		unconditioned cues		females over the next two years, this study
		and modelled the		was able to investigate if neural adaptation to

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		data to assess		the receipt of milkshake predicted increased in
		change response over		weight over time. This analysis revealed that
		repeated exposures.		the adolescents who showed the greatest
		BMI assessed at		increase in the ventral pallidum activation
		baseline and at 6-		when viewing cues, and the greatest decrease
		month, 1-year, and 2-		in the caudate activation during receipt of the
		year follow-ups.		milkshake, were more likely to show greater
				increases in BMI over the next two years.
Burger KS	Both	Cross-sectional; fMRI	Neural responses to the	1) Greater response to Coke logo ads in the
2014	genders	during intake of Coke.	fMRI paradigms and	posterior cingulate in consumers vs non-
USA		fMRI during intake of	comparison between	consumers. 2) Decreased vIPFC activity when
		milkshake. fMRI while	Coke and non-Coke	anticipating intake of Coke in consumers vs
		viewing	drinkers.	non-consumers. 3) More response to
		advertisements.		milkshake vs coke in all participants. 4) Similar
		Comparisons		response to Coca-Cola products in all

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		between Coke		participants.
		drinkers and non-		
		drinkers.		
Campbell IG	Both	Longitudinal;	EEG power density	Daytime sleepiness increased across ages 9-
2007	genders, 9–	Physician-assessed	(power/minute) was	15 years. Bedtimes later. Sleep duration
USA	15 yrs	pubertal stage.	calculated for the first 5	declined with age. NREM EEG power
		Actigraphy for sleep.	hours of non-rapid eye	decreased with age. Sleepiness significantly
		Self-reported changes	movement sleep.	related to delta power density after other
		in sleepiness. Sleep	Subjects rated	measures of sleep-schedule change
		schedule recorded via	sleepiness on a	controlled.
		self-report and	modified Epworth	
		actigraphy.	Sleepiness Scale.	
			Habitual sleep	
			schedules were	
			assessed with self-	

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
			reports and actigraphy.	
Cheetham A	Both	Longitudinal; Brain	Brain volumes.	Smaller OFC volumes at age 12 were
2012	genders,	structure assessed at	Substance use. SES.	correlated with cannabis use by age 16 years.
Australia	12–16 yrs	age 12 years and	IQ.	After controlling for other substance use, only
		cannabis use at age		right OFC volumes remained significant. Only
		16 years.		lateral regions.
Cheetham, A	Both	Longitudinal; Brain	Brain volumes.	1) Gender and age were not significant
2014	genders, 12	structure assessed at	Substance use. SES.	predictors of alcohol-related problems for any
Australia	and 16 yrs	age 12 years and	IQ.	analysis. 2) Smaller volumes of the left dorsal
		cannabis use at age		and rostral paralimbic ACC at age 12 years
		16 years.		increased the odds of experiencing alcohol
				problems at age 16.

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
Choudhury S	Females,	Cross-sectional;	Participants' own	Social explanations referring to the difficulty of
2012	13–14 yrs	Questionnaire and	definitions of	teenage life and the generation gap between
UK		focus group.	adolescence,	parents and their children were both rated
			representations of	highly relative to the biological explanations
			adolescents in society,	(neuroplasticity, neurochemicals, and
			and exposure to, and	evolution, with the exception of hormones).
			perceptions of,	Neuroscience has the potential to defeat
			neuroscientific research	stereotypes, to dehomogenise teenagers as a
			about adolescence.	group, and to present a scientific and de-
				stigmatising picture of who teenagers really are
				'from [their] point of view'. The teenage
				behaviours that neuroscientists explained
				misrepresented adolescence, using the model
				of the teen brain to explain, but at the same
				time reinforce, the 'unbalanced' 'negative

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
				stereotype' of teenagers in society.
Christakou A	Males, 12-	Cross-sectional; task	fMRI activation for	Maturing age and reduced discounting (i.e.
2011	32 yrs	fMRI during temporal	immediate vs delayed	higher AUC measures) were associated with
UK		discounting task.	reward. Interaction of	increased activation during immediate choices
			increasing age and	in the vmPFC cluster, and decreased
			delay discounting on	activation in the ventral striatum. Correlational
			functional connectivity	connectivity analysis revealed that the two
				regions exhibited enhanced coupling with age
				and with less discounting behaviour.
Christakou A	Males, 12–	Cross-sectional; fMRI	Behavioural and fMRI	Preference for advantageous compared with
2013	18 yrs	of Iowa gambling task	changes in adolescents	disadvantageous decks improved with age
UK		variant.	and adults. Preference	through adolescence stabilising in adulthood.
			ratio (the ratio of	Differential responsivity to positive and
			advantageous choices	negative prediction errors was predictive of

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
			over all choices). Brain	performance and matured with age.
			areas where the	Adolescents learned similarly from negative
			utilisation of decision	and positive prediction errors, whereas adults
			values (during the	were more sensitive to negative predictions
			decision phase) and	errors compared to positive. More vmPFC
			PEs (during the	activity during prediction error was associated
			outcome evaluation	with better performance for adults, but more
			phase) matured with	activity in vIPFC, VS, putamen, and subgenual
			age.	cingulate during prediction error was
				associated with worse performance for
				adolescents.
Churchwell JC	Both	Cross-sectional;	Cortical thickness of	Cortical thickness in insula decreased with
2013	genders,	Structural MRI	anterior and posterior	age. Impulsivity decreased with age.
USA	10–22 yrs	(cortical thickness)	insula. Impulsivity	Reductions in cortical thickness of the anterior
		and self-report	measure.	insula were related to reductions in impulsivity.

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		measure of impulsivity		
		(BIS).		
Cohen JR	14–19 yrs	Cross-sectional;	Accuracy, RT, and fMRI	All participants became more accurate and
2010		probabilistic fMRI	activation.	faster with training for predictable stimuli.
USA		task.		Adolescents were the only age group to
				respond significantly more quickly to stimuli
				associated with large rewards as compared
				with small rewards. Younger participants had a
				stronger decision value signal in medial PFC
				as compared with older participants.
Cohen-Gilbert	Both	Cross-sectional;	Accuracy and RT	Inhibitory control increased across age.
JE	genders,	Social threat go/no-go	during go/no-go task.	
2014	12–15 yrs	task with faces.	Four conditions: Threat	
USA			vs Safe & No Go vs Go	
			trials.	

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
Delgado-Rico	Both	Cross-sectional;	Brain activation during	1) Excess weight adolescents, compared to
E	genders,	Comparison of three	risky versus safe choice	normal weight peers, show decreased left
2013	12–17 yrs	groups. fMRI task of	contrast and a reward	insular activation and increased midbrain
Spain		risky decision making	versus punishment	activation during risk-based decision-making.
		in 'Risky-gains task',	feedback contrast.	2) Excess weight adolescents have increased
		which opposes a less		inferior frontal gyrus, thalamus,
		rewarding safe choice		parahippocampal, and posterior activations in
		with more rewarding		response to reward receipt.
		risky choices.		
Engelmann JB	Both	Cross-sectional; fMRI	Response time. How	Advice had a significantly greater impact on
2012	genders,	task involving the	advice affected choices.	risky choice in both adolescent groups than in
USA,	12–17 yrs	evaluation of two	Brain activation during	adult groups. Advice increased the correlation
Switzerland		choice options	valuation. Advice	strength between brain activity and parameters
		(risky/safe) in order to	effects and	reflective of safe choice options in adolescent
		investigate the extent	developmental effects	DLPFC and decreased correlation strength

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		to which advice	on the significant	between activity and parameters reflective of
		influences brain	contrast ROIs.	risky choice options in adult vmPFC.
		correlates of valuation		
		across the three age		
		groups.		
Ernst M	Both	Cross-sectional; fMRI	Behaviour (feelings and	Win vs no-win revealed stronger activation of
2005	genders, 9–	Wheel of Fortune	money won). fMRI	ventral striatum in adolescents compared to
USA	17 yrs	Task: a two-choice	activation in Nacc and	adults, but this was due to differences in how
		decision-making task	amygdala ROIs, and	adolescents and adults process negative (no-
		involving probabilistic	also whole brain.	win) scenarios rather than developmental
		monetary outcomes.	Contrasts: win vs no-	differences in processing positive outcomes.
			win, win vs win & no-	
			win vs no-win of small	
			vs large amounts,	
			correlation with self-	

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
			report ratings of	
			satisfaction.	
Feinberg I	Both	Longitudinal; In-home	Delta decline, pubertal	No change in DPD between ages 9–11 years.
2006	genders, 9–	sleep EEG recordings	maturation, physical	DPD declined by 25% between 12–14 years.
USA	14 yrs	at 6-month intervals	growth, sleep schedule,	DPD was strongly related to age with Tanner
		over 2 years. Tanner	and age.	stage, height, weight and body mass index
		stage, height and		controlled. No other measure of physical and
		weight also obtained		sexual development was related to DPD with
		at each time point.		age controlled.
Feldstein	Both	Cross-sectional; Task	Response in the middle	In high-risk youth, there was a negative
Ewing, S. W.	genders,	fMRI and real world	frontal gyrus (MFG),	correlation between past month substance use
2015	14–18 yrs	behaviours. Examined	inferior parietal lobules	and response inhibition within the left inferior
USA		relationship between	(IPL), and insula during	frontal gyrus (IFG) and right insula, but a
		response during	the response inhibition	positive correlation between past month risky
		(Go/NoGo) and past	(NoGo N Go) contrast	sex and activation within the right IFG and left

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		month risk behaviour	in our fMRI-based	middle occipital gyrus.
		(number of substance	Go/NoGo task.	
		use days; number of		
		unprotected sex		
		days).		
Figner B	Both	Cross-sectional; Four	1) Compared behaviour	Increased adolescent risk taking, coupled with
2009	genders,	experiments	(risk taking and	simplified information use, was found in the hot
Switzerland	14–19 yrs	investigating risk	information use) across	but not the cold condition. Need-for-arousal
		taking and use of	the hot and cold CCT	predicted risk taking only in the hot condition,
		relevant information	versions. 2) Compared	whereas executive functions predicted
		by adolescents and	adolescents' versus	information use in the cold condition.
		adults in both a 'hot'	adults' task	
		affective and a 'cold'	performance. 3) Used	
		deliberative condition.	individual differences	
		Columbia Card Task	measures to establish	

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		(CCT), where risk	convergent validity for	
		taking is assessed via	the dual-system	
		participants' voluntary	explanation of	
		stopping point in a	adolescent risk taking	
		series of	versus alternative	
		incrementally	explanations.	
		increasingly risky		
		choices. CCT		
		assesses the		
		complexity of the		
		decision maker's		
		information use and		
		determines which of		
		three factors that		
		should be affecting		

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		risk taking have been		
		taken into account		
		(outcome probability,		
		gain amount, and loss		
		amount), and it also		
		differentially triggers		
		affective versus		
		deliberative decision-		
		making processes.		
Forbes EE	Both	Cross-sectional; Task	Assessed reward	Groups did not differ in neural activity during
2010	genders,	fMRI during reward	anticipation and	reward anticipation. Pre/early and mid/late
USA	11–13 yrs;	processing (guessing-	outcome evaluation.	pubertal groups differed in neural activity
	Reward-	card game) in relation	Pubertal evaluation by	during reward outcome processing: with the
	related brain	to pubertal	trained nurse.	mid/late group showing less striatal activity and
	function	development.	Circulating	more mPFC activity than the pre/early group.

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
	would differ		testosterone. Subjective	Striatal activity during reward
	between		positive affect (PANAS)	outcome/anticipation positively associated with
	pre/early		and depressive	positive mood, striatal activity during reward
	pubertal and		symptoms (MFQ).	outcome processing was negatively associated
	mid/late			with depressive symptoms. Testosterone in
	pubertal			boys positively correlated with striatal activity in
	adolescents.			reward anticipation. However, testosterone
	Striatal			was negative correlated with reward outcome
	reactivity			processing in both females and males.
	would be			
	positively			
	associated			
	with positive			
	affect and			
	negatively			

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
	associated			
	with			
	depressive			
	symptoms			
	(and the			
	opposite			
	pattern for			
	mPFC			
	reactivity)			
Forbes EE	Both	Cross-sectional;	PER2 SNPs:	One of the two SNPs examined was able to
2012	genders, 1–	Genotyping. Physical	(rs2304672,	predict the neural response to monetary
USA	13 yrs	assessment of	rs2304674). Sleep mid-	reward, which differed based on an individual's
		puberty. Actigraphy to	point: individual	sleep midpoint. Adolescents with later sleep
		measure sleep.	differences in	midpoint showed reduced activity in the medial
		Monetary-Incentive	bedtime/wake time and	prefrontal cortex to reward outcome.

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		Delay task fMRI.	reflects circadian	Individuals who carried the G allele showed
			alignment. Pubertal	reduced activity in mPFC relative to CC
			status. Activity when	homozygotes.
			responding to monetary	
			reward.	
Galvan A	Both	Cross-sectional; task	Behaviour (ratings of	Adolescents report stronger positive and
2013	genders,	fMRI: participants	appetitive and aversive	negative ratings of appetitive and aversive
USA	13–17 yrs	received squirts of	liquids). Brain activation	primary reinforcers, respectively. Reception of
		appetitive or aversive	during anticipation,	aversive liquid recruited the striatum,
		liquid while	reception of liquid, and	amygdala, insula, and sensory regions in all
		undergoing fMRI.	during value ratings.	participants. Adolescents showed greater
				striatal activation and adults exhibited greater
				insular activation. There was no developmental
				difference in neural response to reception of
				appetitive liquid.

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
Geier CF	Both	Cross-sectional; fMRI	Behaviour (eye	Reward trials compared with neutral trials
2010	genders,	during rewarded	saccade accuracy).	resulted in faster correct inhibitory responses
USA	13–17 yrs	antisaccade task	Brain activation during	across ages and in fewer inhibitory errors in
		(cognitive control task	incentive cue, response	adolescents. Adolescents, compared with
		with two conditions:	preparation/anticipation,	adults, demonstrated attenuated responses in
		rewarded and	and behavioural	the VS during incentive cues. Adolescents
		unrewarded).	(saccade) response.	showed heightened response in the VS and
				sPCS during response preparation (reward
				anticipation) on reward trials.
Grose-Fifer J	Both	Cross-sectional; Task	Event-related potentials	No age/gender differences in behaviour (all
2014	genders,	event-related potential	(ERPs) for electrode	participants selected high magnitude cards
USA	13–17 yrs	study during gambling	sites – specifically	more often than low magnitude cards). Losses
		game for monetary	feedback related	elicited larger FRNs than gains and that gains
		reward. Four possible	negativity amplitude,	elicited earlier FRNs than losses. In females,
		outcomes: large win,	ratio, and latency.	FRN amplitude was modulated by the valence

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		small win, small loss,	Magnitude (large,	but not the magnitude of the outcome. In
		large loss.	small) and valence	males, FRN to losses was insensitive to the
			(win, loss) as within-	size of the loss, but small wins elicited a
			subject factors and age	significantly larger FRN than big wins. FRNs
			(adolescent, adult) and	for adolescents were larger and later
			gender (male, female)	compared to adults.
			as between subject	
			factors.	
Hämmerer D	Both	Cross-sectional; EEG	Monitoring positive and	1) Amplitude of feedback-related negativity
2011	genders,	recorded during	negative outcomes	after gains or losses decreased monotonically
Germany	13–14 yrs	probabilistic	during probabilistic	from childhood to old age. 2) Children and
		reinforcement	reinforcement learning.	older adults showed smaller differences
		learning task.	ERPs assessed	between the FRN after losses and the FRN
			processing differences	after gains, needed more trials to learn from
			as a function of	choice outcomes, and showed relatively less

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
			outcome valence and	trial-to-trial learning from gains than from
			the degree of	losses.
			differences in reward	
			probability between	
			choice options.	
Hare TA	Both	Cross-sectional; task	Trait anxiety. Effects of	Adolescents showed greater amygdala activity
2008	genders,	fMRI: emotional	age, gender, and	relative to children and adults, but this
USA	13–18 yrs	go/no-go task where	emotional expression	difference decreased with repeated exposures
		participants had to	on reaction time and	to the stimuli. Individual differences in self-
		detect fearful, happy,	accuracy. Brain activity	ratings of anxiety predicted the extent of
		or calm emotional	in amygdala and ventral	adaptation or habituation in amygdala.
		expressions (target	prefrontal cortex during	Individuals with higher trait anxiety showed
		expression) while	go/no-go during happy,	less habituation over repeated exposures. This
		ignoring non- target	fearful and neural face	failure to habituate was associated with less
		expressions. Anxiety	presentations.	functional connectivity between ventral

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		levels were measured	Connectivity between	prefrontal cortex and amygdala. The strength
		with the Spielberger	these regions.	of coupling between vPFC and the amygdala
		state-trait anxiety	Response latency.	was correlated with greater habituation of
		inventory. Study		amygdala activity in adolescents.
		investigated initial		
		reactivity and		
		subsequent		
		regulation/adaptation		
		of limbic regions with		
		repeated		
		presentations of		
		affective stimuli.		
		Individual and		
		developmental		
		differences were		

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		taken into account.		
Hasler BP	Both	Cross-sectional;	Reward-related activity	Larger advances in the timing of mid-sleep
2012	genders, 1–	Physician-assessed	(anticipation and	from Saturday to Sunday night – which reflect
USA	13 yrs	pubertal stage.	outcome evaluation) in	later natural sleep phase – were associated
		Actigraphy for sleep.	mPFC and striatum.	with diminished activation during the
		Task fMRI reward	Pubertal stage. Shift in	anticipation and receipt of reward in regions
		paradigm.	mid-sleep from	within the mPFC and ventral striatum. This
			Saturday night to	held even after controlling for total sleep time.
			Sunday night.	
			Measures of positive	
			affect and depressive	
			symptoms.	

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
He Q	Both	Cross-sectional;	Activity in the contrast	Higher consumption of vegetables positively
2014	genders,	Examined the activity	between advantageous	correlated with activity in the left superior
USA, China	14–21 yrs	of neural systems	decisions vs	frontal gyrus (SFG) (i.e. a component of the
		hypothesised to	disadvantageous	reflective system), but negatively correlated
		subserve decision-	decisions on the IGT.	with activity in the right insular cortex (part of
		making, using the		the urge network). In contrast, high
		Iowa Gabling Task		consumption of snacks negatively correlated
		(IGT), as well as the		with activity in the left frontal pole (a part of the
		relationship between		reflective system), but positively correlated with
		this neural activity and		activity in the right ventral striatum and right
		real life eating		insula cortex (part of the urge network).
		behaviour. The IGT		
		has been shown to		
		tap into aspects of		
		decision-making that		

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		are influenced by		
		affect and emotion.		
Herting MM	Males, 15–	Cross-sectional;	Tract-based spatial	High-fit youth had an overall higher number of
2014	18 yrs	Examined the	statistics (a voxelwise	streamline counts compared to LF peers,
USA		relationship between	approach for examining	which was driven by group differences in
		white matter	white matter integrity).	corticospinal tract and anterior corpus
		microstructure and	Along-tract	callosum. VO2 peak was negatively related to
		aerobic exercise in	measurements (tract-	fractional anisotropy in the left corticospinal
		adolescent males.	specific white matter	tract.
		DTI to assess white	integrity). Streamline	
		matter microstructure.	counts, fractional	
		Ambulatory	anisotropy, and radial	
		actigraphy using an	diffusivity. VO2 peak.	
		Actiwatch to measure	Self-report puberty.	
		daytime activity	SES. BMI. Mean	

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		levels. VO2 (aerobic	activity levels. Lifestyle	
		uptake) peak to	factors.	
		measure aerobic		
		fitness.		
Holm SM	Both	Cross-sectional;	Pubertal stage (early vs	Adolescents with lower sleep quality show
2009	genders, 1-	Pubertal stage	late). Sleep onset,	decreased activity in the caudate when
USA	13 yrs	assessed by trained	sleep offset, minutes	anticipating rewards or processing reward
		physician. Task fMRI	asleep, and sleep	outcomes. In the reward anticipation phase,
		of card-guessing	quality (self-report).	subjects with fewer minutes asleep and later
		game, designed to	Brain activation during	sleep onset time exhibited less caudate
		probe striatal	two different contrasts:	activation. In the reward outcome phase,
		response to reward	reward	subjects with later sleep onset time showed
		during anticipation	anticipation>baseline	less caudate activation, but later sleep offset
		and outcome phases.	and reward	time was associated with greater caudate
		Sleep behaviours	outcome>baseline.	activation. No significant sleep by development

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		measured by		or sleep by gender interactions.
		actigraphy as well as		
		self-report.		
Hoogendam	Both	Cross-sectional;	Brain activation during	Brain activation during the anticipation of
JM	genders,	Examined age-related	reward processing	reward increased with age, while activation
2013	10–25 years	changes in reward-	(Reward Anticipation	during reward outcome processing decreased
Netherlands		related brain activity	and Reward Outcome)	with age.
		in a sample of	in six predefined	
		children, adolescents	anatomical Regions of	
		and adults aged 10–	Interest (ROIs): the	
		25 during anticipation	bilateral ventral	
		and outcome of	striatum, dorsal	
		reward. Task fMRI	caudate, putamen,	
		modified version of	insula, cingulate cortex,	
		the Monetary	and orbitofrontal cortex.	
Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
----------------------------	-------------	------------------------	-----------------------------------	--
		Incentive Delay task.		
Hooper CJ	Both	Cross-sectional;	Behaviour on Iowa	Age group differences were found for all three
2004	genders, 9–	Examined the pattern	Gambling task. Go/No-	tasks. For IGT, 14–17-year-olds made more
USA	17 yrs	of performance on the	Go task. Digit Span.	overall advantageous choices than 9–10-year-
		Iowa Gambling Task		olds and began to shift their choices to
		across groups of		advantageous decks earlier in the task than
		adolescents varying in		either of the other age groups. For the Go/No-
		age from 9–17 years		Go task and Digit span, each age group
		in relation to		performed better than the younger age groups.
		performance on		
		working memory and		
		behavioural inhibition		
		tasks.		

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
Jacobus J	Both	Longitudinal;	White matter integrity in	1) Lower white matter integrity at baseline in
2013	genders,	Compare substance	4 apriori ROIs 1) body	the fornix and superior corona radiata
USA	16–20 yrs	to non-substance	of the fornix 2) superior	predicted follow-up substance use. 2) Fronto-
		using youth.	corona radiata 3)	limbic white matter integrity was linked to a
		Substance users were	superior longitudinal	greater propensity for future risk taking
		individuals that had	fasciculus 4) the	behaviours among youth who initiated heavy
		>200 lifetime	superior fronto-occipital	substance use by mid-adolescence.
		experiences with	fasciculus. Substance	
		cannabinoids by ages	use and risky	
		16–19 years; Non-	behaviours.	
		users had to have		
		less than 10. White		
		matter integrity as		
		assessed by DTI.		
		Substance use and		

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		risky behaviours by		
		participant-report and		
		parental-report		
		questionnaires/scales.		
Jarcho JM	Both	Cross-sectional; task	Brain activation during	When reward-receipt required decision-
2012	genders	fMRI during reward	responses with-vs-	making, neural activity did not differ by age.
USA		anticipation. Task had	without decision-	When reward receipt did not require decision
		two components of	making, to obtain large-	making, neural activity varied by development,
		decision-making (no-	vs-small rewards, and	reward magnitude, and stage of the reward
		choice vs choice), and	during reward receipt.	task.
		incentive size (small		
		vs large), and		
		anticipation and		
		outcome of reward		
		was analysed for		

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		adolescents and		
		adults.		
Javadi AH	Both	Cross-sectional; Used	In Anterior Cingulate	ACC activity reflected both feedback and
2014	genders,	novel way of	Cortex (ACC); Ventral	decision making in adolescents, but only
Germany	14–15 yrs	examining signal	Striatum (VS); and	decision making in adults. vmPFC activity
		(transforming	Ventromedial Prefrontal	represented feedback in adolescents, but
		continuous signal into	cortex (vmPFC).	reflected both feedback and decision in adults.
		discrete states).		VS activity reflected solely feedback for both
		Probabilistic reversal		groups.
		learning task to		
		investigate how		
		adolescents and		
		adults incorporate		
		feedback (both		
		rewarding and		

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		punishing) in their		
		decisions in a		
		dynamic and		
		uncertain		
		environment, where		
		feedback is		
		probabilistic and		
		contingencies change		
		from time to time.		
Keulers EH	Males, 13–	Cross-sectional; fMRI	Extent and magnitude	Magnitude increased with age. There was
2011	17 yrs	gambling task in	during decision phase	neither an age-related decrease in activation
Netherlands		which participants	of gambling task.	extent, nor any qualitative shifts in activated
		decide to either		areas as suggested by the focalisation
		gamble or pass in		hypothesis. Developmental changes in
		order to earn as many		activation magnitude evolved from no

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		points as possible.		differential response in most task-related areas
		Controlled for		to an enhanced response to more difficult,
		confounders that may		endogenous task conditions with increasing
		bias towards		age. Deciding to pass as opposed to gamble
		focalisation by: 1)		exerted more effort in 13-year-olds.
		investigating small		
		age ranges, 2)		
		correcting for head		
		motion, and 3)		
		defining regions of		
		interest for each		
		participant separately		
		to overcome inter-		
		individual variability in		
		anatomy and		

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		functional		
		organisation.		
Lamm C	Both	Longitudinal;	Activation in selected	Increased incentive-related striatal activation
2014	genders,	Monetary Incentive	regions dorsal caudate,	from mid-adolescence to late
USA	13.7–21 yrs	Delay fMRI task in	ventral caudate,	adolescence/early adulthood in the cue-
		mid-adolescence and	putamen, globus	anticipation-for-action stage of the MID task.
		late adolescent/early	pallidus, and nucleus	The developmental increase in striatal
		adulthood.	accumbens) and also	response was similar for reward and
			whole brain analysis for	punishment conditions. Findings were specific
			trials that varied by	to the dorsal striatum and no age-related
			valence (gain, loss) in	change was detected in regions of the ventral
			the contrast: high-	striatum or in primary sensory-motor cortical
			incentive vs low-	areas.
			incentive. Compared	
			acrossage. Repeated	

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
			measures ancova.	
Liston C	Both	Cross-sectional; DTI,	Accuracy & RT for	Changes in diffusivity (an index of fiber
2006	genders,	behavioural Go/No-	Go/No-Go trials. Fiber	integrity) were associated with developmental
USA	10–15 yrs	Go task.	integrity of frontostrital	changes in performance on the go/no-go task.
			and corticospinal tracts.	Individual differences in frontostriatal, but not
				corticospinal, diffusivities predicted individual
				differences in performance independent of
				age.
Liu ZX	Both	Cross-sectional; EEG	Theta activity in fronto-	Response control improved linearly with age.
2014	genders, 7–	during Go/No-Go	midline regions.	Theta power, calculated in proportion to the
Canada	18 yrs	task.	Behaviour on Go/No-	baseline, increased with age during response
			Go task.	control processing. This developmental effect
				was source-localised to the ACC, correlated
				with behavioural performance, partially

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
				mediated the age-related improvement on
				response control, and stronger when older
				children exerted more effort on the task.
Lotfipour S	Both	Cross-sectional;	OFC thickness; BDNF	BDNF genotype, prenatal exposure to
2009	genders,	Examined the	Genotype; Prenatal	maternal cigarette smoking, and the number of
Canada	12–18 yrs	relationship between	exposure to maternal	drugs tried interacted to predict OFC thickness.
		OFC thickness and	cigarette smoking.	Prenatal exposure to maternal cigarette
		drug experimentation		smoking was associated with a greater
		in a population-based		likelihood of drug experimentation during
		sample of		adolescence. For exposed adolescents, more
		adolescents (12-18		drugs tried was negatively correlated with OFC
		years of age), half of		thickness, whereas the opposite (a positive)
		whom had been		relationship was found for non-exposed
		exposed to maternal		adolescents (which was moderated by BDNF
		cigarette smoking		genotype).

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		during gestation,		
		matched to non-		
		exposed adolescents		
		by maternal		
		educational level.		
Luciana M	Both	Longitudinal;	Alcohol use at baseline	Initiators demonstrated a greater-than-
2013	genders,	Prospective	and follow-up. Cortical	expected decline in cortical thickness in the
USA	14–22 yrs	examination of the	thickness. White matter	right hemisphere middle frontal gyral region.
		effects of alcohol use	extent. DTI measures:	Cortical white matter extent, particularly in right
		initiation on ongoing	fractional anisotropy	hemisphere regions associated with motor
		structural brain	and mean diffusivity.	function (precentral gyrus), complex visual
		development.		processing/visual integration (lingual gyrus),
		Structural MRI two		recognition memory (middle temporal gyrus)
		years apart and self-		and conflict monitoring/cognitive control
		reported alcohol use.		(anterior cingulate cortex) failed to show the

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
				expected rate of increase over time in alcohol
				initiators. Non-users showed a relative
				increases in FA over time in the dorsal caudate
				in left hemisphere and mid-temporal/polar-
				temporal region of inferior fronto-occipital
				fasciculus in right hemisphere relative to
				alcohol use initiators.
Mills KL	Both	Longitudinal;	Grey matter volume of	There was substantial heterogeneity in brain
2014	genders, 7–	Longitudinal structural	nucleus accumbens,	development patterns across participants, but
USA	30 yrs	MRI; self-report	amygdala, and	most participants showed an earlier developing
		questionnaires.	prefrontal cortex.	amygdala compared with the PFC (and some
			Retrospective, self-	participants likewise showed an earlier
			reported risk- taking,	development of the nucleus accumbens
			sensation-seeking and	compared to the PFC). There was no clear
			impulsive behaviours.	relationship between the presence of a

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
				mismatch and adolescent risk-taking or
				sensation-seeking behaviours.
Moreno-López	Both	Cross-sectional;	Brain sizes (both	In the group of adolescents with typical BMI,
L	genders,	Voxel-based	regional volumes and	the size of the second somatosensory cortex
2012	12–17 yrs	morphometry (brain	whole brain analyses).	was negatively correlated with reward
Spain		structure) analysis of	Measures of impulsivity,	sensitivity and the size of the dIPFC was
		adolescents divided	inhibitory control, and	positively correlated with inhibitory control,
		into typical and	reward sensitivity.	whereas these relationships were absent in the
		excess weight groups.		groups of adolescents with excess weight.
		Correlate brain		Adolescents with excess weight had, on
		structure to		average, larger right hippocampi.
		questionnaire		
		measures of		
		Sensitivity to		
		Punishment,		

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		Sensitivity to Reward,		
		Impulsivity, and		
		behaviour on the		
		Stroop task.		
Naneix F	Males,	Longitudinal; A series	A series of behavioural	Dopaminergic fibers and tissue content
2012	adolescents	of behavioural	experiments in rats, as	continue to increase in the medial prefrontal
France		experiments in rats,	well as measurement of	cortex from juvenile to adult age, but
		as well as	their dopaminergic	dopaminergic development in the striatum and
		measurement of their	fibers and tissues.	Nacc is limited to the juvenile stage.
		dopaminergic fibers		
		and tissues.		
Olson EA	Both	Cross-sectional; DTI;	White matter integrity	Higher FA and lower MD values in white matter
2009	genders, 9–	Behaviour;	(fractional anisotropy	pathways that interconnect the lateral
USA	23 yrs	Questionnaires.	and medial diffusivity).	prefrontal and temporal-parietal cortices with
			Delay discounting	other brain regions were associated with lower

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
			(AUC). Verbal IQ	rates of delay discounting across adolescence.
			(WASI). Self-reported	White matter microarchitecture in right frontal
			pubertal status (PDS).	and left temporal regions (as well as near the
				globus pallidus and the amygdala for MD only)
				was associated with individual differences in
				delay discounting performance that were not
				attributable to age in this sample. In contrast,
				white matter tracts in left frontal and right
				temporal and parietal regions, as well as
				pathways near the amygdala, hippocampus,
				thalamus, anterior cingulate / paracingulate
				gyrus, and splenium of the corpus callosum,
				showed age-dependent associations between
				white matter organisation and delay
				discounting behaviour.

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
Ordaz SJ	Both	Longitudinal;	Growth curves for	Cognitive control protracted through
2013	genders, 9–	Longitudinal task fMRI	behaviour and brain	adolescence; sex nor IQ explained variance.
USA	26 yrs	during antisaccade	function.	Mean growth curves for brain activation in a
		paradigm.		priori regions of interest revealed little
		Hierarchical linear		developmental change in motor response
		modelling.		control regions and increased activation in an
				error-processing regions. Decelerating rates of
				activation right dIPFC in as children proceed
				into adolescence. Only error processing
				activation was associated with performance,
				and this was shown to mediate the relationship
				between age and inhibitory error rates.
Padmanabhan	Both	Cross-sectional; task	Behaviour: antisaccade	Rewards enhanced task performance (i.e.
А	genders,	fMRI during rewarded	performance during	reduced latencies and error rates) for all
2011	14–17 yrs	antisaccade task.	rewarded vs	groups. Heightened VS activation during

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
USA			unrewarded trials. Brain	rewarded relative to neutral trials was specific
			activation for time x	to adolescence. Rewards enhanced activity in
			incentive x group.	regions associated with oculomotor and
				inhibitory control in adolescence. Basic neural
				circuitry underlying response inhibition and
				incentive processing is established in
				childhood. Adolescents showed increased
				activity in regions supporting performance that
				resulted in reward receipt reflect
				enhancements in motivation.
Peper JS	Both	Cross-sectional;	Pubertal effects (PDS	Testosterone levels and OFC morphology
2013	genders, 8–	structural MRI.	and testosterone) on	modulate risk taking across pubertal
Netherlands	25 yrs	Behaviour: Balloon	behavioural	development: higher testosterone levels were
		Analog Risk Task	performance (risk	associated with increased risk taking. OFC
		(risk taking task).	taking: number of	morphology (smaller OFC gray matter volume

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		Hormonal assays.	balloon explosions).	in males and smaller OFC surface areas in
		Self-reported puberty	OFC volume, thickness,	girls) amplifies risk taking.
		(PDS).	and surface areas.	
Peters BD	Both	Cross-sectional; DTI.	The corpus callosum,	From childhood to early adulthood, higher FA
2014	genders, 8–	A neurocognitive test	two projection tracts,	of the cingulum bundle and inferior
Netherlands	18 yrs	battery. Linear	and five association	frontooccipital fasciculus (IFOF) was
		mediation models.	tracts were traced using	associated with higher executive functioning
			probabilistic	and global cognitive functioning, respectively,
			tractography. Speed of	independent of the effect of age. When
			processing, attention,	adjusting for speed of processing, FA of the
			spatial working	IFOF was no longer associated with
			memory, verbal	performance in the other cognitive domains
			functioning, visual	with the exception of visual learning. From
			learning, and executive	early adulthood to late adulthood, white matter
			functioning.	tract FA was not associated with cognitive

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
				performance independent of the age effect.
Pfeifer JH	Both	Longitudinal;	Activation during face-	Responses to affective facial displays in VS
2011	genders,10-	Longitudinal task fMRI	viewing task for VS,	and VMPFC increased from late childhood to
USA	13 years	during affective	VMPFC, and amygdala	early adolescence. VS response increases to
		displays. Self-	for neutral, happy,	all expressions were correlated with increases
		reported resistance to	angry, fearful, or sad	in RPI and decreases in IRBD.
		peer influence. Self-	faces. Resistance to	
		reported pubertal	peer influence.	
		development with		
		PDS. Connectivity		
		analysis (PPI).		
Pharo H	Both	Cross-sectional;	Self-reported risk-taking	Personality traits of impulsivity, sensation-
2011	genders,	Battery of	(LEQ); Personality	seeking, aggression, and sociability were
New Zealand	13–17 yrs	neuropsychological	measure (ZKPQ-SF);	related to increased levels of risky behaviour.

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		testing; Self-report	Neuro-cognition	Individual differences in performance on a
		personality	(Neuro-function).	Neuro-Function battery were uniquely
		questionnaires, risk-		predictive of participants' real-life risky
		taking questionnaire.		behaviour above and beyond the variation that
				was accounted for by personality, age, and
				sex. Participants who scored lower on the
				neuropsychological battery engaged in higher
				levels of risky behaviour than did individuals
				who scored higher on the neuropsychological
				battery.
Ripke S	Both	Task fMRI during	Signal when deciding	When controlling for discounting behaviour,
2012	genders,	temporal discounting	on whether to choose	neural processing the value of delayed
Germany	13.7–15.5	task.	an immediate versus	rewards does not differ between adolescents
	yrs		long-term reward.	and adults. Adolescents' brain regions
				processing reward value were neither hyper-

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
				nor hypo- sensitive compared to adults'.
Ripke, S	Both	Cross-sectional; task	Brain activation during	Higher intelligence was associated with higher
2015	genders,	fMRI during temporal	amount dependent and	activation during value-dependent processing
Germany	13.7–15.5	discounting task.	amount independent	in a frontal network consisting of the perigenual
	yrs	General IQ test.	decision processing. IQ	ACC, the IFG, and the ventromedial pFC as
			(g). Temporal	well as the VS (value-dependent network).
			discounting behaviour	responses in these regions were negatively
			(k and AUC).	correlated with the temporal discounting rate.
				Higher intelligence was related to higher in the
				dorsolateral pFC, the precuneus, and the
				occipital lobe (value-independent network)
				during the value-independent decision
				processing, which in turn was positively
				correlated with the consistency of choices.

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
				Associations between intelligence and
				temporal discounting or consistency of choices
				are at least partly mediated by activation in the
				respective brain network.
Rodrigo MJ	Both	Cross-sectional; fMRI	Behaviour in task. Brain	Participants spent more time in making a
2014	genders,	during Social Context	activation during risky	dangerous choice than a safe choice (no age
Spain,	17–18 yrs	Decision task (SCDT),	vs ambiguous	or gender difference). SCDT in risk scenarios
Germany		which consisted of	scenarios and within	(compared to ambiguous scenarios) activated
		short stories that	risk scenario:	control-related network and social cognitive
		describe social	dangerous vs safe.	network. Adolescents showed greater
		situations involving		recruitment of the right DLPFC and the right
		risk and ambiguous		TPJ in risk situations than young adults. When
		decision-making.		choosing the dangerous option, young adults
				showed a further engagement in ToM related
				regions (bilateral MTG) and in motor control

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
				regions related to the planning of actions (pre-
				supplementary motor area). Finally, the right
				insula and the right superior temporal gyrus
				were more activated in women than in men,
				suggesting more emotional involvement and
				more intensive modelling of the others'
				perspective in the risky conditions.
Romer D	Both	Longitudinal;	Measures of: risk	Risk taking, impulsivity, and working memory
2011	genders,	Longitudinal	taking, acting without	increased across age. Working memory
USA	10–12 at	assessments at three	thinking, sensation	performance was inversely related to
	baseline,	waves. Task	seeking, and working	subsequent risk behaviour. Sensation seeking
	10–15	measures of	memory.	was positively related to working memory
	overall	executive function		performance and acting without thinking was
		(working memory)		negatively related to working memory
		and questionnaire		performance.

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		measurement of risk		
		taking, impulsivity,		
		sensation seeking,		
		and externalising		
		problems.		
Rubia K	Males, 10–	Cross-sectional; task	Task performance and	Despite comparable task performance, adults
2007	17 yrs	fMRI during stop	brain activation during	showed increased brain activation compared
UK		signal task (withhold	successful and	with children/adolescents in right inferior
		motor response when	unsuccessful stop trials.	prefrontal cortex during successful inhibition
		cue is followed by		and in rostral anterior cingulate gyrus during
		another 'error' signal).		stop failures.
		IQ used as covariate		
		(raven's progressive		
		matrices).		

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
Rubia K	Males, 10–	Cross-sectional; task	Task performance.	1) Increased brain activation in task-specific
2006	17 yrs	fMRI during Go/No-	Brain activation during	frontostriatal networks in adults compared to
UK		Go task (selective	no-go vs go trials;	adolescents, including right orbital and mesial
		motor response	incongruent vs	prefrontal cortex and caudate during the
		inhibition), Simon task	congruent trials; switch	Go/no-go task, right mesial and inferior
		(interference	vs repeated trials.	prefrontal cortex, parietal lobe, and putamen
		inhibition), and Switch		during the Switch task and left dorsolateral and
		task (inhibition of		inferior frontotemporoparietal regions and
		irrelevance).		putamen during the Simon task. 2) Progressive
				age-related changes in similar and extended
				clusters of task-specific frontostriatal,
				frontotemporal, and frontoparietal networks.
Silveri MM	Both	Cross-sectional;	Metabolite data for	Adolescents have lower GABA than early
2013	genders,	Proton magnetic	GABA from the anterior	adults. Lower ACC GABA/Cr was significantly
USA	12–14 yrs	resonance	cingulate cortex (ACC)	associated with greater impulsiveness and less

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		spectroscopy. Go/No-	and the parieto-occipital	cognitive control, with lower ACC GABA/Cr
		Go task. Barrett	cortex (POC).	most strongly predicting worse accuracy on
		Impulsivity Scale.	Impulsivity (BIS score).	No-Go trials in adolescent males.
			Response Inhibition	
			(Go/No-Go).	
Simmonds DJ	Both	Longitudinal; DTI.	White matter integrity	The majority of white matter reached
2014	genders,	Two oculomotor	(tract-based): Fractional	maturation during adolescence. Several late-
USA	13–17 yrs	tasks: the visually-	anisotropy; Medial	maturing regions including those connected to
		guided saccade task	diffusivity; Radial	prefrontal regions, distinct phases of growth
		and the antisaccade	diffusivity. Latency and	were seen, with rapid growth in childhood,
		task.	Inhibitory errors on	followed by a slowing of growth in early-middle
			oculomotor tasks.	adolescence and acceleration of growth again
				in late adolescence/early adulthood. Males
				showed larger and more protracted WM
				microstructural growth, with lower levels of FA

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
				than females in childhood and greater levels in
				adulthood. Differences in the timing of white
				matter changes may underlie developmental
				changes in behaviour. RT variability and
				inhibitory performance continued to mature
				through adolescence, whereas latency
				matured earlier. RT variability was associated
				with the timing of white matter development
				across the whole brain.
Smith AB	Both	Cross-sectional; Task	Brain activation during	Adolescents were significantly slower than
2011	genders,	fmri, sustained	contrast of non-	adults to non-rewarded sustained attention
USA	10–17 yrs	attention task with two	rewarded target versus	target trials, but more sensitive to incentives,
		versions: rewarded	non-target trials and	so that this difference was normalised in the
		and non-rewarded.	contrast of rewarded	reward condition. Non-rewarded vs non-target:
			target versus non-	Linear increases in activation with age in brain

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
			rewarded target trials.	regions associated with sustained attention:
				right hemispheric lateral inferior frontal,
				superior temporal and inferior parietal cortices
				with decreases in linear activation with age in
				earlier developing limbic and paralimbic medial
				temporal, posterior insular and posterior
				cingulate regions known to be important for
				saliency detection. Reward further enhanced
				the age-dependent activation increases
				observed in the non-rewarded sustained
				attention regions in inferior frontal, temporal
				and cerebellar brain regions and elicited
				additional activation increases within top-down
				executive attention and motivation control
				areas such as dorsolateral and ventromedial

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
				orbital PFC and dorsal striatum.
Somerville LH	Both	Cross-sectional; task	Behaviour and brain	Adolescents show a failure to suppress
2011	genders,	fMRI during Go/No-	activation during the	responses to happy vs calm faces more than
USA	13–17 yrs	Go task with	following outcomes:	children or adults. The VS showed maximal
		emotional faces.	misses (failure to press	activity in teens to happy faces. During no-go
			during go trial) and	trials, prefrontal recruitment was greater in
			false alarms	younger individuals, and prefrontal activity also
			(erroneously pressing	predicted performance, such that individuals
			during no-go trial).	who were overall less successful at
			Investigated differences	suppressing approach responses showed
			between happy vs calm	more right IFG activity for successful
			faces. Brain	suppression trials. Striatocortical responses
			connectivity during task.	show a relatively greater degree of functional
				organisation in teens and adults relative to

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
				children.
Spielberg JM	Both	Longitudinal; fMRI	Neural responses to	Increases in testosterone over a 2-year period
2014	genders,	task of threat	threat cues, serum	of pubertal maturation predicted increases in
USA	11–15 yrs	reactivity.	testosterone levels.	brain activation to stimuli typically associated
			Correlation of changes	with threat, observed in both a brain region
			between timepoint2 and	typically associated with threat avoidance
			timepoint1.	(amygdala) and a region typically associated
				with reward pursuit (NAc). Moreover, increased
				activation in both amygdala and NAc was
				related to greater approach behaviour (shorter
				RT to threat faces).
Stevens MC	Both	Cross-sectional; task	Brain network structure	There were three distinct neural circuits
2007	genders,	fMRI during Go/No-	and interactions related	comprising brain regions associated with
USA	11–17 yrs	Go task. Dynamic	to successful response	response inhibition: a fronto-striatal-thalamic

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		Causal Modelling.	inhibition. Behavioural	network (specifically, the indirect pathway); a
		ICA.	performance.	network comprising bilateral precentral gyri,
				inferotemporal cortex, anterior insula, and right
				inferior frontal cortex; and a frontal-parietal
				circuit. Adolescents and adults differed in
				response inhibition network engagement,
				regional connectivity, and network dynamics.
Stice E	Females	Longitudinal; task	BMI at baseline,	Less activation in brain regions involves in
2010		fMRI imaging eating	change in BMI over the	reward processing was related to increases in
USA		palatable, unpalatable	following year. Neural	BMI only for groups with allelic variants
		foods compared to	responses to palatable	suggestive of reduced dopamine signalling.
		water. BMI measured	vs unpalatable foods or	Greater activation in brain regions involves in
		at baseline and 6 and	palatable foods vs	reward processing predicted elevated future
		1 year follow-up. Two	water. Differences in	weight gain for those not at genetic risk for
		dopamine genotypes	groups with different	reduced dopamine signalling.

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		analysed.	TaqIA1 allele of the	
			DRD2 gene or the exon	
			3 7-repeat allele of the	
			DRD4 gene.	
Strang NM	14–16 yrs	Cross-sectional; task	Sustained activation in	All participants demonstrated a shift to
2014		fMRI.	reward vs neutral	proactive cognitive control in the context of
USA, Canada			blocks.	reward.
Strang NM	Males, 12–	Cross-sectional; task	Heart rate. Behaviour.	Both adults and adolescents had increases in
2011	15 yrs	fMRI during a	Brain activation and	heart rate during the challenge condition. Both
USA		stressful task that	functional connectivity	adolescents and adults engaged the DLPFC
		involves both an	in response to	and dACC in a similar manner. Adults, but not
		intellectual challenge	challenge.	adolescents, recruited the anterior insula. In
		and social evaluation.		adults, prefrontal regions were more strongly
				functionally connected to the anterior insula,

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
				than they were in adolescents.
Tamm L	Both	Cross-sectional; task	Behaviour: Accuracy &	Reaction times decreased with age during
2002	genders, 8–	fMRI during Go/No-	RT for errors of	correct NoGo trials. No age differences in
USA	20 yrs	Go task.	omission (misses) or	accuracy. There are both positive and negative
			errors or commission	age-related changes in specific brain regions
			(false alarms).	associated with response inhibition: younger
				participants recruited the left superior and
				middle frontal gyri more than older participants
				to perform the task adequately, whereas older
				participants showed increased focal activation
				in the left inferior frontal gyrus.
Telzer EH	Both	Cross-sectional; Task	Self-report: 1) Family	Family obligation was associated with less risk-
2013	genders,	fMRI (Risk taking task	obligation 2) Family	taking, dampened activation in the VS to
USA	14–16.5 yrs	and Self Control task).	cohesion 3) Risky	increasing monetary rewards, and greater

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		Self-report	behaviour 4) Decision-	activation in the DLPFC during successful
		Questionnaires on	making competence.	behavioural inhibition. Dampened VS
		family obligation,	Behavioural: 1) Risk-	activation was associated with less self-
		decision making	taking 2) Response	reported risk-taking behaviours. Greater
		competence, and risk-	inhibition. Brain: 1)	DLPFC activation was associated with greater
		taking.	Gender differences	decision making competence.
			during risk taking. 2)	
			Age differences in	
			response inhibition. 3)	
			How neural activation	
			during the two imaging	
			tasks related to	
			questionnaire	
			measures.	

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
Treit S	Both	Cross-sectional; DTI;	Behaviour: IQ, Naming,	In frontal and posterior white matter regions,
2014	genders, 5–	Cognitive testing.	Inhibition, Switching.	worse inhibition performance correlated with
Canada	16 yrs		Voxel-based analysis of	higher FA. In posterior and brainstem regions,
			fractional anisotropy.	better cognitive flexibility was associated with
			Cluster tractography.	higher FA.
			Manual tractography.	
Urošević S	Both	Longitudinal;	BIS/BAS sensitivities;	There was increased reward sensitivity from
2012	genders, 9–	Demographics,	OFC, Nacc, and	early to late adolescence, with a decline
USA	17 yrs	diagnostic interview	amygdala volumes.	starting in the early 20s. There was also a
		assessment, a set of		decrease in left nucleus accumbens volume
		questionnaires, a		from the late teens into the early 20s.
		neurocognitive		Longitudinal increases in sensitivity to reward
		battery,		to be predicted by individual differences in the
		psychophysiological		nucleus accumbens and medial orbitofrontal
		testing, and a		cortex volumes at baseline.

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		structural MRI scan.		
Urošević S,	Both	Cross-sectional;	BIS/BAS sensitivities;	After controlling for effects of age and sex,
Collins P	genders, 9–	Questionnaires, a	Pubertal stage; Brain	pubertal status, as indexed by a PCA-derived
2014	18 yrs	neurocognitive	volumes for amygdala,	puberty factor score, significantly predicted
USA		battery,	caudate, hippocampus,	greater reward sensitivity as measured by the
		psychophysiological	Nacc, pallidum,	BAS Total and BAS Fun Seeking scales in
		testing, and structural	putamen, and	adolescents. There were no unique main
		brain imaging, two	thalamus.	effects of chronological age after controlling for
		self-report puberty		puberty and sex effects on reward sensitivity.
		measures.		There were significant sex-specific effects of
				advanced pubertal status on nucleus
				accumbens and pallidum volumes, as well as
				volumes of the right thalamus.

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
van den Bos	Both	Cross-sectional;	Behaviour:	1) With increasing age, negative feedback had
W	genders,	Probabilistic Learning	reinforcement learning.	decreasing effects on future expected values.
2012	13–16 yrs	Task during fMRI.	Brain activation during	2) Neural activation to prediction errors did not
Netherlands			prediction errors	differ between age groups. 3) Age differences
			(negative and positive).	in learning rates were associated with an age-
			Striatal functional	related increase in functional connectivity
			connectivity during task.	between the ventral striatum and the mPFC.
van	Both	Cross-sectional;	Neural and behavioural	Children were insensitive to changing levels of
Duijvenvoorde	genders,	Behavioural and	processing of risk,	risk, but showed significant sensitivity to
AC	16–19 yrs	parametric fMRI	return, gain and loss.	changing levels of return. Adolescents and
2015		analyses during	Monotonic and	adults showed sensitivity to risk and return, on
USA,		decision making task	adolescent-specific	average seeming to avoid increasing risk and
Netherlands		(fMRI-compatible	developmental	to approach increasing return. Neural
		version of the 'hot'	differences.	responses to risk showed adolescent-specific
		Columbia Card Task		changes, whereas neural responses to return
Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
----------------------------	------------	------------------------	-----------------------------------	--
		(CCT).		showed monotonic age-related changes.
van	Both	Cross-sectional and	Risk taking on task.	1) A reward-related network including VS and
Duijvenvoorde	genders,	Longitudinal;	BAS Drive, Fun-	medial PFC was consistently activated over
AC	10–19 yrs	Examined the effects	seeking, and Reward-	time 2) the propensity to choose the risky
2014		of reward-related	responsiveness. Brain	option was related to increased reward-related
USA,		brain activation, age,	activation during reward	activation in VS and medial PFC, and 3)
Netherlands		puberty, and	vs loss and as a	Longitudinal comparisons indicated that self-
		individuals' reward	proportion of plays.	reported reward sensitivity was specifically
		sensitivity on risk-	Brain connectivity	related to VS activation over time. 4) Risk-
		taking. Two	during contrast.	taking propensity was generally stable across
		experiments, one		time and was not related to developmental
		cross-sectional and		factors and individual differences.
		one longitudinal		
		extension of the		

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		cross-sectional study.		
		Task fMRI and		
		connectivity during		
		Jackpot Task, a risky		
		decision task.		
		Behavioural inhibition		
		system/behavioural		
		approach system		
		scale. Puberty		
		assessed with PDS.		
Van	Both	Cross-sectional; task	Risk taking behaviour	There were no age differences in risk-taking
Leijenhorst L	genders,	fMRI during The Cake	(# of risks and RT).	when the reward at stake was high, however,
2010	12–17 yrs	Gambling Task.	Brain regions involved	for the more ambiguous 2 Euro gambles
Netherlands		Participants were	in High-Risk versus	participants were more risk averse as they
		asked to choose	Low-Risk decisions;	were older. No age differences in response

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		between a low-risk	Neural correlates of	times. Across ages, risky choices were
		gamble and a high-	age-related differences	associated with activation in the medial PFC
		risk gamble	in risk-taking and	and the ventral striatum, whereas cautious
		associated with a	individual differences in	choices were associated with activation in the
		probabilistic monetary	risk-taking; Brain	DLPFC. A linear decrease in activation with
		reward.	regions related to the	age associated with risky choices in the dorsal
			processing of outcomes	ACC. There was an adolescent specific peak
			of High-Risk gambles;	in activation in a region in VMPFC during the
			Effects of reward	decision phase of trials, and in the VS during
			magnitude on outcome	the outcome phase. The behavioural data do
			processing; Neural	not reveal a peak in risk-taking in adolescence.
			correlates of age-	Individual differences in risk-taking behaviour
			related differences in	in the task were associated with activation in
			outcome processing.	regions in medial PFC, and not with activation
				in the VS.

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
Vara AS	Both	Cross-sectional; task	Behaviour: Hits Rate,	Right dominant inferior frontal activity in adults;
2014	genders,	MEG during Go/No-	False Alarms, RT on	Left dominant, bilateral activity in the inferior
Canada	13–17 yrs	Go task.	Go/No-Go. Brain	frontal regions for adolescents. Delay of the
			activity during task as	inferior frontal activity in adolescents compared
			measured by MEG.	with adults. Supplemental cortical recruitment
				helped adolescents maintain adequate
				inhibitory performance.
Velanova K	13–17 yrs	Cross-sectional; task	Eye tracking;	Children made significantly more AS errors
2008		fMRI during	behaviour; brain	than adolescents, who made more errors than
USA		oculomotor task.	activation (time course	adults. Regions known to support the voluntary
			x response type).	control of eye movements showed greater
				activity during correctly performed AS trials
				than on error trials, but little developmental
				change. The dACC showed greater activity for
				error trials than for correct trials with the

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
				magnitude of that difference increasing and
				extending in time from childhood to adulthood
				 despite children showing significantly longer
				response latencies. Finally, children showed
				increased involvement of dIPFC relative to
				adolescents and adults, with an anterior to
				posterior shift evidenced with increasing age.
Velanova K	13–17 yrs	Cross-sectional; task	Eye tracking;	The rate of successful inhibitory responding
2009		fMRI during	behaviour; brain	improved from childhood through young
USA		oculomotor task.	activation (sustained	adulthood: processes implicated in sustained
			statistical activation	performance continue to mature after those
			change during	supporting trial-specific performance
			antisaccades).	(competence) are in place. Transient trial-
				specific activation is mostly mature by
				adolescence, but sustained brain activation, as

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
				evident in adults, follows a more protracted
				developmental trajectory that mirrors
				improvements in performance between
				adolescence and young adulthood. Transient
				activation in prefrontal regions supporting
				controlled processing decreases with age, but
				sustained activation increases.
Verdejo-	Both	Cross-sectional; A	BMI; IQ–Kaufman brief	Adolescents with excess weight have poorer
Garcia A	genders,	comprehensive	intelligence test;	neuropsychological performance on tests of
2010	13–16 yrs	battery of executive	Working memory-letter-	response inhibition, flexibility, and decision-
Spain		functioning tests	number sequencing;	making. Individuals with excess BMI have
		including measures of	Analogical reasoning-	worse flexibility performance: cognitive
		working memory,	similarities; Planning–	flexibility (measured by the TMT) was the
		analogical reasoning,	zoo map;	ability most significantly decreased in
		planning, response	Interference/response	adolescents with excess weight. Excess-

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		inhibition, flexibility,	inhibition–Stroop test;	weight adolescents do not differ from normal-
		self-regulation, and	Inhibition and shifting-	weight controls in their performance on tests of
		emotional decision-	five-digit test; Set-	working memory, planning, and analogical
		making.	shifting-trail-making	reasoning, or in self-report measures of
			test A and B; Self-	impulsivity.
			regulation–Revised	
			Strategy Application	
			Test; Effective decision-	
			making–IGT.	
Vijayakumar N	Both	Longitudinal;	Annualised percent	There were longitudinal improvements in
2014	genders,	Longitudinally	change of cortical	reactive control between early and mid-
Australia	12.7–17.7	acquired structural	thickness for the ACC,	adolescence. The magnitude of the
	yrs	MRI and behavioural	dIPFC, and vIPFC.	improvement in proactive control was
		measure of cognitive		associated with reduced thinning of the right
		control (proactive vs		vIPFC. The magnitude of the improvements in

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		reactive) as assessed		reactive control was associated with reduced
		by Stroop task.		thinning of the left ACC (males only).
Vink M	Both	Cross-sectional; task	Behaviour/performance	Reactive inhibition improved across
2014	genders,	fMRI during a stop-	on the SSRT (latency	development, where older subjects were faster
Netherlands	10–25 years	signal task (which	and success). Brain	in reactive inhibition, and this was paralleled by
		measures two forms	activation during two	an increase in motor cortex suppression. While
		of inhibitory control:	these reactive inhibition	proactive inhibition increased with age, it was
		reactive inhibition	contrasts. Also a priori	more to do with older subjects slowing down
		(outright stopping)	ROI activation in a	responding more compared to younger
		and proactive	fronto-parietal network.	subjects when anticipating a stop-signal, and
		inhibition (anticipation	Functional connectivity	this was paralleled by increased activation in
		of stopping).	of a right striatal seed.	the right striatum, right ventral and dorsal
				inferior frontal gyrus, and supplementary motor
				area. Functional connectivity during proactive
				inhibition increased between striatum and

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
				frontal regions with age.
Weiland BJ	Both	Cross-sectional;	Voxel-based	No statistically significant differences were
2015	genders,	Structural MRI.	morphometry, surface-	found between daily users and nonusers on
USA	14–18 yrs	Comparison groups of	based morphometry,	volume or shape in the regions of interest.
		daily marijuana users	and shape analysis of	Effect sizes suggest that the failure to find
		vs non-users matched	specific ROIs: nucleus	differences was not due to a lack of statistical
		on alcohol use.	accumbens, amygdala,	power, but rather was due to the lack of even a
			hippocampus, and	modest effect.
			cerebellum.	
Weiland BJ	Both	Cross-sectional;	Brain structure (grey	The early risk sample had smaller volumes in
2014	genders,	Diagnostic interview:	matter volume).	the left frontal cortex, when controlling for total
USA	18–23 yrs	Substance risk score.	Externalising	GM volume, substance use, and family history.
		Youth self-report	behaviours. Substance	There was a negative relationship between
		questionnaire:	use risk.	total GM, left frontal, and left superior frontal,

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		externalising		cortical volumes and early externalising
		behaviours. Family		behaviours.
		history of alcohol use.		
		Structural MRI (grey		
		matter volume).		
Yaxley RH	Both	Cross-sectional; fMRI	Group average as well	Increased activity of the frontal pole with age
2011	genders,	task designed to	as age correlations with	during decision making, no association with
USA	12–17.7 yrs	challenge the dorsal	three contrasts:	age and Vstr during reward evaluation.
		lateral prefrontal	Behavioural risk;	Decision making during the task elicited
		executive control and	Reward risk; No Risk.	activation in executive-control regions typically
		ventral medial	Focused on two	implicated in studies of adult decision making
		prefrontal reward	conditions per contrast:	and behavioural risk trials evoked greater
		circuits (Decision-	choice selection and	activation than the other conditions in
		Reward Uncertainty	outcome evaluation.	executive-control regions. Results were similar
		task)		to those of young adults using the same task.

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
				Reward versus no reward elicited significant
				activations in brain regions typically implicated
				in decision and reward processing.
Yokum S	Both	Cross-sectional; Task	Neural responses to	The costs of eating and benefits of not eating
2013	genders	fMRI viewing	three contrasts:	strategies are more successful in increasing
USA		appetising and	suppress	inhibitory region activation than the suppress
		unappetising food	craving>imagine eating,	craving strategy. There was no difference
		images based on the	costs of eating>imagine	between BMI groups.
		individual's food	eating, benefits of not	
		preferences.	eating>imagine eating.	
		Participants instructed		
		to think about the		
		food in the pictures in		
		one of four ways: (1)		
		imagine eating, (2)		

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		costs of eating, (3)		
		benefits of not eating		
		and (4) suppress		
		craving.		
National Inst.	Both	Integrate studies of	Genes, puberty, brain,	Genes have a large influence on the
on Alcohol	genders,	the effects of genes	alcohol use, rodent	development of problematic alcohol use, and
Abuse and	adolescents	on alcohol initiation,	studies, macaque	environmental factors have a large influence
Alcoholism	and young	use, and dependence	studies, human studies.	on the age of alcohol use initiation. Changes in
2004/2005	adults	with studies of		how alcohol is absorbed, distributed and
		physiological		eliminated occur during adolescence, which
		development		impact how alcohol affects an individual.
		measuring brain,		Adolescent rats are less sensitive to the
		pubertal, and other		negative effects of alcohol than adult rats, and
		changes to analyse		adolescent rats drink more alcohol than adult
		how adolescence is a		counterparts. Genetic influence on alcohol use

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		sensitive period for		increases across adolescence.
		the effects of alcohol.		
Arain M	Adolescents	-	-	-
2013				
Bava S	Both	Reviews papers on	MRI measures;	-
2010	genders,	adolescent brain	neurotransmitter	
USA	adolescents	development, with	systems; behaviour.	
		particular attention to		
		studies on reward		
		seeking, risky		
		behaviour. Also		
		reviews papers that		
		measure how		
		substance use can		

Population	Method	Outcomes/variables of interest	Brief summary of findings
	affect brain		
	maturation.		
Both	Review	brain measures,	Adolescence is a time of substantial changes
genders,		cognitive measures,	in brain structure and function in regions
adolescents		behavioural measures	related to social processing, especially
			understanding the mental states of others.
Both	Review of literature	Activation in	Adolescents are more likely than children and
genders,	on impulsivity,	adolescents during	adults to make risky decisions in 'hot' contexts,
adolescents	inhibitory control,	decision-making tasks.	where emotions are at stake or peers are
	temporal discounting,		present and social cognition is involved.
	learning and		
	prediction errors, and		
	the effects of		
	emotional or social		
	(hot) contexts on		
	Population Both genders, adolescents Both genders, adolescents	PopulationMethodaffect brain maturation.Both genders, adolescentsReviewBoth genders, adolescentsReview of literature on impulsivity, inhibitory control, temporal discounting, learning and prediction errors, and the effects of emotional or social (hot) contexts on	PopulationMethodOutcomes/variables of interestaffect brain maturation.affect brain maturation.Both genders, adolescentsReviewbrain measures, cognitive measures, behavioural measuresBoth genders, adolescentsReview of literature on impulsivity, inhibitory control, temporal discounting, learning and prediction errors, and the effects of emotional or social (hot) contexts onActivation in adolescents

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		decision making.		
		Comparison with adult		
		literature.		
Blakemore S	Both	Review of early	Brain structure and	One of the first reviews to suggest that social
2006	genders,	cognitive and	function.	cognitive processing and executive functions
	adolescents	neuroimaging		continue to change through adolescence given
		literatures.		the changes occurring in the brain during this
				time.
Brown GR	Both	Review of mammal	Effects of adolescence	'Exposure to stress during adolescence
2013	genders,	and bird literature on	stress on behaviour and	appears to impact upon numerous brain areas
	adolescents	stress and	brain development.	and to influence several neurotransmitter
		development.		systems, including the serotonergic and
				dopaminergic systems.'
Cameron JL	Both	Overview of animal	GnRH secretion is	Most evidence supports stress leading to
2004	genders,	and human literature	impaired under stress.	suppressed or delayed pubertal development,

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
	adolescents	on how stress impacts		but there is some evidence that stress can
		puberty and the		speed up pubertal development.
		neural mechanisms.		
Cameron JL	Both	Review of studies	Measures of hormones;	Hormone changes at puberty affect
2004	genders,	about neural	measures of sexual	reproductive behaviour in animals.
	adolescents	responses to	behaviour; neuronal	
		hormones. Mostly	measures.	
		animal studies.		
Casey BJ	Both	-	-	-
2010	genders			
Casey BJ	Both	Review of the	Self-control in the face	The results of this literature review challenge
2015	genders,	literature	of incentives: Appetitive	simple models such as the dual-system or
	adolescents		Cues, Performance-	triadic models of adolescent behaviour. The
			Based Incentives,	review findings support the idea that changes

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
			Social Contexts. Self-	in self-control during adolescence are related
			control in the face of	to changes in connections within fronto-limbic
			threat: Cues of	circuitry.
			Potential Danger, Cued	
			Fear, Contextual Fear.	
Chambers RA	Both	Review papers on the	Brain anatomy,	Regions of the brain involved in motivation,
2003	genders	neurocircuitry of	function, synapses, and	impulsivity, and addiction are continuing to
		motivation,	metabolism. Behaviour.	develop through adolescence. This ongoing
		impulsivity, addiction	Epidemiological	change explains some of the 'transitional trait
		and	studies.	behaviour' observed during adolescence,
		neurodevelopment.		including impulsivity and novelty seeking.
Champagne	Both	-	-	-
FA	genders,			
2010	prenatal to			
	adult			

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
Check JH	Both	-	-	-
2013	genders,			
	adolescents			
Choudhury S	Both	-	-	-
2013	genders,			
	adolescents			
Colrain IM	Both	-	-	-
2011	genders,			
	adolescents			
Crews F	Both	-	-	-
2007	genders,			
	adolescents			
Crone EA	Both	-	-	-
2012	genders,			
	adolescents			

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
Crone EA	Both	-	-	-
2009	genders,			
	adolescents			
Dahl RE	Both	-	-	-
2008	genders,			
	adolescents			
Dayan J	Both	-	-	-
2010	genders,			
	adolescents			
Defoe IN	Both	-	-	-
2014	genders,			
	children to			
	adolescents			
Diamond LM	Both	-	-	-
2014	genders,			

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
	Lifespan			
	approach			
Doremus-	Both	-	-	-
Fitzwater TL	genders,			
2010	adolescents			
Ernst M	Adolescents	-	-	-
2009				
Ernst M	Both	-	-	-
2014	genders,			
	adolescents			
Ernst M	Both	-	-	-
2006	genders,			
	adolescents			

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
Fareri DS	Both	-	-	-
2008	genders,			
	adolescents			
Feinberg I	Both	-	-	-
2010	genders,			
	adolescents			
GalvÃin A	Both	-	-	-
2014	genders,			
	adolescents			
Geier C	Both	-	-	-
2009	genders,			
	adolescents			
Geier CF	Both	-	-	-
2013	genders,			
	adolescents			

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
Guerri C	Both	-	-	-
2010	genders,			
	adolescents			
Hagenauer	Both	-	-	-
МН	genders,			
2012	adolescents			
Halpern CT	Females,	-	-	-
2006	adolescents			
Johnson SB	Both	Literature review.	Historical attempts to	Discusses age-based policies (e.g. age of
2009	genders,		use developmental	consent). Little empirical evidence to support
	adolescents		benchmarks as	the current legal age of majority (18) as an
			measures of adolescent	accurate marker of adult capacities. Discusses
			maturity. What is known	some weakly supported ideas about how brain

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
			about adolescent brain	matures.
			development? What is	
			unknown about	
			adolescent brain	
			development? What	
			neuroimaging research	
			can and cannot tell us	
			about the adolescent	
			brain and behaviour.	
			Current use of the brain	
			sciences in adolescent	
			health policy debates. A	
			strategy for increasing	
			the utility of brain	
			science in public policy	

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
			to promote adolescents'	
			wellbeing.	
Johnson SB	Both	-	-	-
2010	genders,			
	adolescents			
Konrad K	Both	Selective review of	Public health data on	1) In adolescence, a fundamental
2013	genders,	pertinent articles	risk taking behaviours	reorganisation of the brain takes place that
Germany	adolescents	retrieved from the	in German teenagers.	continues into the beginning of the third
		PubMed database	Strucural and functional	decade of life. 2) Adolescent brain
		about the structural	MRI studies.	development is characterised by an imbalance
		and functional	Histological studies in	between the limbic and reward systems, which
		development of the	humans and non-	mature earlier, and the not yet fully mature
		brain in adolescence.	human primates. The	prefrontal control system. This imbalance may
		Focus on how	effects of hormones on	be the neural substrate for the typical
		development relates	brain measures in	emotional reactive style of adolescence, and it

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		to risk-taking	rodents.	may promote risky behaviour. 3) Typical
		behaviour.		adolescent behaviour is the basis for the
				development of autonomy in adolescents and
				promotes their emancipation from the primary
				family. 4) The hormones of puberty affect the
				further sex-specific restructuring of the
				adolescent brain. 5) The reorganisation of the
				adolescent brain renders it particularly
				susceptible to environmental influences, both
				positive and negative.
Leyton M	Both	Review of studies in	Human behavioural	Behavioural traits that predict drug use
2014	genders,	human adolescents,	traits. Dopamine	behaviours covary with the tendency to engage
Canada, USA	adolescents	young adults, and	function (hyper and	with other rewarding stimuli and individual
		laboratory animals.	hypo) in animals.	differences in dopamine cell responsiveness.
				While heightened dopamine responses to

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
				emotionally intense stimuli might initially target
				diverse non-drug stimuli, the initiation of drug
				use steers the heightened dopamine reactivity
				toward drug-related cues, leading to drug
				conditioning and sensitisation.
Liang J	Both	Systematic review.	Empirical articles with	67 studies. Overall negative relationship
2014	genders,	Empirical research	BMI, weight, or obesity-	between obesity and neurocognitive
	adolescents	1976–2013. Must	related behaviour in	functioning, such as executive functioning,
		have: at least one	addition to the following	attention, visuo-spatial performance, and motor
		measure of	kinds of cognitive	skill. Mixed effects among obesity, general
		neurocognitive	functioning measures:	cognitive functioning, language, learning,
		functioning and at	neuropsychological	memory, and academic achievement.
		least one measure of	tests, self-report	Executive dysfunction associated with obesity-
		obesity or weight, or	measures, or	related behaviours, such as increased intake,
		at least one measure	performance-based	disinhibited eating, and less physical activity.

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		of an obesity-related	tasks.	Physical activity is positively linked with motor
		behaviour. Studies		skill.
		with participants of all		
		body mass index		
		(BMI) levels and that		
		included participants		
		ages 18 and under		
		were included.		
Lubman DI	Both	Review of human and	Other reviews and	Brain volumes correlate with age at first use of
2007	genders,	rodent studies on the	some empirical	alcohol/cannabis.
Australia	adolescents	effects of alcohol on	evidence. Brain	
		brain/endocrine	volumes, brain	
		functioning. Review of	functioning,	
		brain development.	neuroendocrine	
		Focus on the effects	functioning, behaviour,	

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		of early age of onset.	cognition.	
Luciana M	Both	Review of behavioural	Behavioural changes in	Major nodes of incentive motivation circuit are:
2012	genders,	and neuroscience	motivational	midbrain ventral tegmental area (VTA), its
USA	adolescents	literature (rodent and	tendencies,	dopaminergic projections to medium spiny
		human). Overview of	neurobiological	neurons of the nucleus accumbens, ventral
		dopamine system,	changes involving the	pallidum, amygdala, hippocampus, anterior
		structural plasticity,	structure and	cingulate cortex, and medial orbitofrontal
		changes in the	functioning of this	cortex. Many healthy typically developing teens
		dopamine system	neural circuitry	do not apparently demonstrate unusually
		during adolescence.	supporting incentive	strong motivational drives and impulsive
			motivation. Table	response tendencies. Incentive-reward
			summarising major	motivation and behavioural activation are
			changes in	relatively greater in adolescence compared
			dopaminergic signalling	with other points in the lifespan because of
			in primates and	increases in mesoaccumbens DA tonic activity

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
			rodents. Table	during this time.
			summarising fMRI	
			Studies of reward	
			processing in healthy	
			adolescents.	
Luciana M	Both	Review of the current	A Retrospective on	The dorsolateral PFC is interconnected with
2013	genders,	state of knowledge	Conceptual Models of	the mediodorsal thalamus, with the dorsal
USA	adolescents	regarding	Adolescent Behaviour.	striatum (primarily the caudate nucleus), with
		neurodevelopmental	The Heterogeneity of	the inferior parietal cortex, and other structures
		models of adolescent	the PFC and Its Striatal	within the dorsal visual system. + The
		behaviour, extensions	Connections. Shift to	ventromedial PFC is more strongly
		of these models to	dual systems models.	interconnected with limbic structures, such as
		psychopathology, and		the extended amygdala, hypothalamus, the
		future directions		ventral striatum, and anterior portions of the
		within this field of		temporal cortex. = Distinct prefrontally guided

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		inquiry.		networks exist for the regulation of cognitive
				versus affective processes.
Luciana M	Both	Review of the	Developmental	Adolescents can be enormously competent in
2012	genders,	literature.	changes in incentive	their levels of executive function, but that self-
	adolescents		motivation and	regulation falters under conditions of high
			implications for	stress or high demand.
			cognitive control/self-	
			regulation.	
Luna B	Both	-	-	-
2010	genders,			
	adolescents			
Luna B	-	-	-	-
2009				

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
Luna B	-	-	-	-
2004				
Lydon DM	Both	-	-	-
2014	genders,			
	adolescents			
Nelson EE	-	-	-	-
2005				
USA				
Nixon K	Both	-	-	-
2010	genders,			
	adolescents			
O'Dell LE	Both	-	-	-
2011	genders,			

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
	adolescents			
Oron Semper	Both	-	-	-
JV	genders,			
2014	adolescents			
Padmanabhan	Both	-	-	-
А	genders,			
2014	adolescents			
Pfeifer JH	Both	-	-	-
2012	genders,			
	adolescents			
Pfeifer JH	Both	-	-	-
2012	genders,			

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
	adolescents			
Placzek AN	Both	-	-	-
2009	genders,			
	adolescents			
Richards JM	Both	-	-	-
2012	genders,			
	adolescents			
Richards JM	Both	Systematic Review of	-	-
2013	genders,	the		
	adolescents	neurodevelopmental		
		literature on reward		
		processing.		
		Specifically reward-		
		related studies of		

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		healthy individuals		
		that include both		
		paediatric and adult		
		samples.		
Riggs NR	Both	-	-	-
2009	genders,			
	adolescents			
Romer D	Both	-	-	-
2010	genders,			
	adolescents			
Sachser N	Both	-	-	-
2011	genders,			
	adolescents			
Sawyer SM	Both	-	-	-
2012	genders,			

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
	adolescents			
Schulz KM	Both	-	-	-
2006	genders,			
	adolescents			
Segalowitz SJ	Both	-	-	-
2010	genders,			
	adolescents			
Sercombe H	Both	-	-	-
2014	genders,			
	adolescents			
Silveri MM	Both	-	-	-
2014	genders,			
	adolescents			

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
Sisk CL	-	-	-	-
2004				
Sisk CL	-	-	-	-
2005				
Smith AR	Both	-	-	-
2013	genders,			
	adolescents			
Smith AR	Both	-	-	-
2014	genders,			
	adolescents			
Somerville LH	Both	-	-	-
2010	genders,			
	adolescents			
Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
----------------------------	-------------	----------------------	-----------------------------------	--
Somerville LH	Both	-	-	-
2010	genders,			
	adolescents			
Spear LP	Adolescents	-	-	-
2002				
Spear LP	Both	-	-	-
2013	genders,			
	adolescents			
Spear LP	Both	Review of rodent and	Brain measures and	Adolescents respond differently to drugs.
2014	genders,	human studies.	behaviours in humans	Adolescents are more sensitive to social
	adolescents		and rodents.	facilitation effects of ethanol; adolescents are
				less sensitive to the 'negative' effects of
				ethanol, such as sedation.

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
Steinberg L	-	-	-	-
2005				
Steinberg L	Both	-	-	-
2010	genders,			
	adolescents			
Trezza V	-	-	-	-
2008				
Vigil P	Both	-	-	-
2011	genders,			
	adolescents			
Wahlstrom D	Both	A neurobehavioral	Dopamine	During adolescence, dopamine levels are at a
2010	genders,	systems framework to	concentrations,	functional high, leading to elevated patterns of
	adolescents	describe adolescent	innervation, and	exploration, novelty-seeking, incentive

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		behaviour; a review of	receptor density.	salience, and locomotor activity, all of which
		the dopaminergic	Animal and human	serve to bring the individual into contact with
		system; a review of	work. COMT and	biologically salient incentives.
		the development of	cognition.	
		the dopaminergic		
		system; implications		
		for cortical and		
		subcortically-		
		mediated behavioural		
		processes;		
		measurement issues.		
Wahlstrom D	Both	Background in how	Behavioural and brain	There is increased dopamine availability in
2010	genders,	human neuroimaging	development in	adolescence compared to adulthood (based on
	adolescents	studies have	adolescence;	animal work). The influence of COMT on
		promoted 'prefrontal	Dopamine activity,	cognition may depend on state factors such as

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
		cortex' based	cells, projections,	age and individual differences, such as sex,
		hypotheses of	enzymes, receptors,	both of which are known to impact the DA
		adolescent behaviour.	genes, development,	system that mediates the relationship between
		Reviews mostly	receptor density,	COMT and cognitive processes.
		animal studies to	transporter density,	
		establish evidence for	COMT and cognition at	
		hypothesis: overview	different developmental	
		of dopamine system,	stages.	
		dopamine system		
		development, and		
		COMT.		
White AM	Both	-	-	-
2009	genders,			
	adolescents			

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
Willoughby T	Both	Comparing the	Review of public health	1) Most youth go through adolescence without
2013	genders,	developmental time	records,	experiencing any major problems and there
Canada	adolescents	courses risk taking in	epidemiological	are low rates of mortality/morbidity in
		real life to risk taking	records, self-report	adolescence. 2) Studies on rates of risk taking
		in the laboratory.	behaviours, cognitive	across adolescence and young adulthood do
			studies of risk-taking,	not provide unequivocal support for the Dual
			neuroscience studies.	System Model hypothesis that risk taking
				should be most common among 15 year olds.
				University students take the most risks. 3) Risk
				taking is not always impulsive, can be planned
				and adolescents may deliberately engage in
				risk taking behaviour in order to gain social
				rewards. 4) Adults also engage in risk taking.
Windle M	Both	Examine the	Epidemiology,	1) Early initiation of drinking is associated with
2009	genders,	relationship between	psychology, sociology,	later problems with alcohol, including

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
USA	10–15 yrs	the developmental	neuroscience, animal	dependence, and abuse of other substances.
		period from 10–15	studies.	2) As adolescents mature they play a more
		years and the use of		active role in choosing their social relationships
		alcohol. Overview of		and physical environments, and these choices
		normative human		increase their risk and/or protective factors for
		development between		alcohol use. 3) The number or percentage of
		ages 10–15 years.		alcohol using friends is the most potent
		Discussion of alcohol		predictor of an adolescent's alcohol use.
		use during early and		
		middle adolescence		
		and the risk and		
		protective factors		
		related to underage		
		drinking and to future		
		use.		

Authors Date Country	Population	Method	Outcomes/variables of interest	Brief summary of findings
Yurgelun-	Both	Review of structural	Structural fMRI:	1) Increases in executive functioning across
Todd D	genders,	and functional MRI	morphometry, DTI.	adolescence is associated with greater
2007	adolescents	studies	Functional MRI:	recruitment of prefrontal cortex. 2) PFC activity
USA			Executive functions;	becomes more focal. 3) Increasing modulation
			Emotional processing.	of emotional processing by prefrontal between
				adolescence and young adulthood.