List of studies included in the review – not related to brain physiology

Authors Date Country	Population/ topic	Method	Outcomes/ Variables	Findings
Abraham &	Adol. females 12–14	Cross-sectional,	1.weight	51 participants; the concept of dieting
O'Dea	yrs. To examine pre	qualitative study;	2.height	that may result in weight loss and the
2001	and post menarcheal	questionnaires and	3.BMI	behaviours and feelings associated with
Australia	female school	focus group	4.dieting: understanding	dieting did not develop until menarche
	students in relation to	discussions.	and behaviour	and is likely to be associated with the
	dieting.		5.menstrual status	rapid increase in height, weight, and
				body fat during that time.

Andreacci	Pre-pubertal and	Cross-sectional study	1.x-ray absorptiometry	87 adols; findings indicate that black pre-
2004	pubertal adols, 9–	using objective and	(body composition)	pubertal and pubertal children had lower
USA	14yrs; to determine	SR data.	2.computed tomography	VO2max when compared with their white
	whether maximal O ₂		scan (adipose tissue)	peers matched for age, pubertal stage,
	consumption differed		3.PA questionnaire	and body mass index; also related to
	between two groups		(Modifiable Activity	higher physical inactivity levels in the
	of black and white		Questionnaire - SR)	prepubertal black children. Difference in
	children and whether		4.Tanner stage – prof ax	VO ₂ max between the <i>pubertal</i> racial
	differences existed in		(confirmed by	groups was independent of body
	hematologic profiles,		measurements of total	composition and physical activity level.
	body composition,		testosterone in boys,	
	and/or physical		estradiol in girls)	
	activity levels.		5.Hb blood levels	
Armstrong	Adols 11–13yrs.	Longitudal study over	1.Peak O2 – annually over	Gender, age, and maturity differences in
2000	To examine the	3 years.	3 yrs	the increase in fat-free mass relative to
UK	influence of gender,		2.Gender	body mass are the predominant
	growth, and		3.Tanner indexes of pubic	influences on the differential growth of
	maturation on peak		hair	boys' and girls' VO2peak in 11–13 yr
	O2 consumption		4.BMI	olds.
			5.stature	
			6.skin fold thickness	

Ayele	Adol. girls 10–19yrs;	A cross-sectional	1.Calorie/protein/	Data from 660 Ethiopian girls; Low
2013	association between	study design with	coffee intake	menarche age independently associated
Ethiopia	age at menarche and	multistage sampling.	2.BMI	with high calorie intake, high protein diet,
	BMI/health related	Anthropometric	3.PA	greater coffee intake, low physical
	behaviours.	measures and	4.parental	activity, adequate sleep, and parents' low
		questionnaires.	education/income	educational background. Low body mass
			5.sleep hours	index, low parents' income, exercise, and
				Amhara ethnic background were
				associated with late menarche age.
Baams	Youth 10.5–22.4 yrs	SR + MA	1.Intercourse	50 included studies. Early development
2015	Pubertal timing/	1980–2012.	2.Combined sexual	associated with earlier and more (risky)
Various	Status and sexual		behaviour	sexual behaviour, esp in girls.
countries;	behaviour.		3.Risky sexual behaviour	
Dutch study			(age, gender and ethnicity	
team			also examined)	

Baker BL	Adol. girls 11 and 13	Longitudinal cohort	1.pubertal stage: blood	Data from 143 girls; Early-maturing girls
2007	yrs.	study over 2 years.	estradiol levels, Tanner	had significantly lower self-reported PA
USA	Pubertal timing and		breast staging, and	and fewer minutes of moderate to
	PA.		parental report	vigorous and vigorous physical activity
			2.PA (ActiGraph	and accelerometer counts per day at age
			accelerometer	13 than later maturing girls. These
			3.BMI/weight status	effects were independent of differences
			4.Body fat %	in percentage body fat and self-reported
				physical activity at age 11.

Baker &	Adol girls at 9, 11	Longitudinal study at	1. Perceived athletic	149 adol. girls. More advanced breast
Davison	and 13yrs; examined	three time points over	competence (PAC) using	development at age 9 was associated
2011	predictors of	puberty.	Self-Perception Profile for	with greater relative declines in PAC
USA	perceived athletic		Adolescents	between ages 11 and 13. Both age 11
	competence and		2. Nonaesthetic versus	PA and the relative change in PA
	subsequent PA.		aesthetic sport	between ages 11 and 13 were significant
			participation 3.body fat %	positive predictors of age 13 moderate to
			4.breast development	vigorous PA. Girls who participated in
			(All measured at age 9)	non-aesthetic sports at age 9 reported
			5.Accelerometers were	higher PAC at age 11 than those who
			used to measure girls'	participated in only aesthetic sports.
			moderate-to-vigorous	
			physical activity at age 13.	

Bale	To examine the	Review of evidence	1.Forced expiratory	Respiratory factors such as FEV are
1992	influence of growth	relating to growth	volume (FEV)	lower in females after puberty. Cardiac
UK	and maturation on	and maturation on	2.cardiovascular output	output may also be reduced, with
	functional	functional	3.heart rate	females having faster heart rates and
	performance/exercise	performance/exercise		smaller hearts over this developmental
	and metabolic	and metabolic		period.
	response to exercise	response to exercise.		
	from childhood into			
	adolescence/			
	Adulthood.			
Belsky	Adols 11–19 at start	Longitudinal,	1.Genotyping of alleles.	1586 adols; males (not females) with
2011	of 7 yr study. Genetic	prospective study;	2.Maternal engagement/	more plasticity alleles demonstrated
USA	plasticity alleles in	DNA genotyped from	Involvement.	more and less self-regulation with both
	relation to parenting	buccal samples.	3.Adols and mothers ax of	supportive and unsupportive parenting.
	and self-regulation.		self-regulation, including	
			temper & trustworthiness	

Benefice	Adol girls, 12–14yrs	Longitudinal study	1.pubertal status (as	40 girls; girls in this sample had high
2001	of the Sereer ethnic	over 2 years of	assessed by breast	levels of energy expenditure. Energy
Africa	group of rural	puberty.	development and	intakes were, on average, sufficient to
	Senegal. To examine		occurrence of menarche)	meet energy and protein requirements,
	energy expenditure		2.selected anthropometric	although micronutrient deficiencies were
	and physical activity		dimensions (weight,	likely to exist. Activity levels declined with
	levels.		stature, arm	age; stature was negatively correlated
			circumference, and six	with both total daily and day-time activity,
			skinfolds)	whereas the body mass index was
			3.physical activity levels	positively associated with this measure.
			quantitatively assessed	Pubertal status and subcutaneous
			using CSA accelerometers	fatness were not significant predictors of
			4.food consumption survey	activity levels.
			using an individual food	
			weighing method.	
Biggs &	Adols 9–11yrs 11	Retrospective re-	1.BMI/girth	Short sleep duration predicted
Dolmain	months and 13-	analysis of 1985 data	2.sleep duration	overweight/obesity in boys across both
2007	16yrs. Data from	to include PA and	3.dietary intake: total	age groups, but not in younger group
Australia	Australian High	diet.	energy intake, fat intake	girls. Larger girth was present in younger
	Schools Health and		4.PA	boys only. Shorter sleep was associated
	Fitness Survey.		(items 2-4 self-measured)	with lower BMI in older girls.

Bitar	Adols 10–16yrs; to	Cross-sectional	1.skinfold-thickness	62 adols; the DEE of adolescents
1999	investigate variations	study.	2.bioimpedance analysis	measured under standardized conditions
France	in daily energy		3.Energy expenditure (EE)	varied with sex, body composition, and
	expenditure (DEE)		determined continuously	season, but not with stage of puberty.
	and its main		over 24 h by using 2	
	components during		whole-body calorimeters	
	adolescence and to		4.Tanner stage (prof ax?)	
	quantify their		5.BMI	
	significant			
	determinants.			
Blomeyer	Adols drinking	Epidemiologic cohort	Pubertal stage at first	283 participants; pubertal first drinking
2013	behaviour at ages	study; interviews and	drink, plus drinking	predicted elevated adult drinking
Germany	15, 19, 22, and 23.	Qs.	behaviour at 19, 22, and	compared to post-pubertal onset.
	(Cohort data from 3		23 (drinking days, amount,	Corroborated by animal study.
	months of age;		hazardous drinking).	
	children at risk			
	study).			
	Study involving adol.			
	rats also carried out.			

Bordini	Pre-pubescent and	Cross-sectional	1.BMI	40 girls (20 per and 20 pubertal girls).
2009	pubescent girls, 6–	comparison of pre	2.Overnoght blood	Healthy but excess weight girls have
USA	10yrs and 10–13yrs.	and pubescent girls.	samples for lutenising	significantly blunted sleep-related
	To determine		hormone, follicle	lutenising hormone production. These
	whether excessive		stimulating hormone and	data suggest that excess adiposity, in the
	adiposity is		other hormonal assays	absence of sex steroid excess, may
	associated with		3.glucose tolerance test	subtly suppress hypothalamic-pituitary-
	alteration of the		4.pelvic ultrasound	gonadal function in premenarcheal
	normal hormonal			pubertal girls.
	changes of early			
	pubertal girls.			

Brandalize	Adols 11–14yrs; to	Follow up	1.Self-reported bedtime,	379 adols; changing from afternoon to
2011	assess whether the	(longitudinal) study	wake-up time, and time-in-	morning, adolescents experienced a
Brazil	shift from afternoon	over two time points,	bed	significant reduction in hours of sleep on
	to morning classes	1yr apart.	2. Adolescent Food	school days. Results found no effect of
	reduces the duration	Adolescents were	Frequency Questionnaire	the school schedule change on weight
	of sleep and whether	divided into two	(SR)	gain. The time-in-bed reduction in the
	this reduction has	groups: an afternoon-	3.Body mass index	period analysed cannot be considered to
	any relation to body	morning group	4.waist circumference	be a mediating factor to modifications in
	fat.	(students who shifted	5.body fat percentage	overweight anthropometric indicators.
		from afternoon to	(3–5 by direct measures)	
		morning classes) and		
		an afternoon-		
		afternoon group		
		(students who		
		remained in		
		afternoon classes).		

Buchmann	Participants drawn	Prospective, cohort	1.Age at first drink	304 participants; Younger age of first
2009	from 'Children at	study. Structured	2.Current drinking	drink predicted by 5-HTTLPR genotype,
Germany	Risk' study (birth-	interviews with adols	behaviour	but even controlling for this, early age of
	adulthood – same	and parents.	3.Risk factors, including	drinking onset remained a strong
	overall study as		early	predictor of heavy alcohol use in early
	Blomeyer et al,		adversity/psychopathology,	adulthood.
	2013); current data		parental consumption	
	from ages 15 & 19		4.genotype	
	years.			
Buchanan	To evaluate evidence	Review of evidence.	1.hormone levels	Not all adolescents exhibit aggressive or
1992	relating to hormones,	Exact methods not	2.affective behaviours	delinquent behaviour, even although all
USA	mood and behaviour	specified.	3.delinquent behaviours	adolescents experience hormonal
	in adols.			increases. Socio-cultural aspects and
				timing of puberty are influencing factors.
Cairney	Adols 11–14yrs;	Prospective	1.PA – self reported	2100 participants; rate of physical
2014	Effects of biological	longitudinal study of	2.anthropometric	decline in PA was greater in girls.
Canada	and chronological	different cohorts.	measures	Biological age was a stronger predictor
	age on PA levels.		3.biological age (peak	of participation than chronological age.
			height)	
			4.chronological age	
			4.gender	

Calamaro	Data from 'ADD	Longitudinal study	1.Obesity (BMI)	13,568 participants; Short sleep duration
2010	Health' study; youth	from 2 time points, 1–	2.Sleep duration	not predictive of later obesity, but
USA	aged 12–18 years	2 years apart. Survey	3.Nutrition	depressed adols twice as likely to be
		data from students	4.Physical inactivity (recall	obese, and those who watched \geq 2hrs
		and parents.	of TV viewing)	TV/day were 37% more likely.
			5.Depression	
			Covariates of	
			age/race/gender/	
			parental income	
Campbell	Boys living in	Cross-sectional	1.spontaneous nocturnal	Data from 442 boys living in Zimbabwe;
BC	Zimbabwe, aged 12–	study. Anonymous	emission (self-report)	First spontaneous nocturnal emission
2005	18yrs;	questionnaires and	2.secondary sexual	was a stronger predictor of sexual
Zimbabwe	To explore the	blood specimens	characteristics	behaviour than secondary sexual
	relative timing of	collected.	3.salivary testosterone	characteristics, and may be used as a
	puberty and the		4.age of first sexual	marker of pubertal timing. Variation in
	relationship with		fantasy	testosterone is associated with onset of
	sexual behaviour.		5.non-coital sexual	sexual behaviour, beyond its relationship
			behaviour	with developmental timing.
			6.coitus (sex with a girl)	

Carskadon	Adols second	Review article.	Circadian timing system	Being awake longer is easier during
MA	decade; sleep	Methods used in	(incl. melatonin secretion),	adolescence, but need for sleep is
2014	regulatory changes,	review not specified.	and sleep homeostatic	unchanged, producing a 'social jet lag'
	behaviour and		system (measured by	with health and behavioural
	caffeine use.		EEG) examined, plus	consequences. Sleep deficits may result
			actual sleep hours, and	in increased caffeine use, to delay sleep
			use of caffeine.	at night and increase feelings of being
				alert during the day. Effectiveness of this
				questioned.
Carskadon	Adols second	Review and	1.sleep regulation/patterns	Whilst there is a reduction of sleep
MA	decade; sleep	discussion of sleep	in adolescents	amount in adolescence, sleep need does
2011	patterns and	hypotheses relating	2.psychosocial factors,	not decline. Several hypotheses
USA	regulation.	to adolescence and	such as parental influence,	discussed: Circadian period (internal day
		sleep patterns.	independence, electronic	length) may become longer; there may
		Review methods not	device use, school start	be altered sensitivity to light phases. Bed
		specified.	times	times and effects of electronic devices
			3.health implications e.g.	further impact on sleep patterns.
			mood, behaviour	

Carskadon	Adols 14–16yrs.	Cross-sectional	1.Two weeks of actigraphy	40 adols; early start time was associated
1998	To examine effects	design (some further	measurement	with significant sleep deprivation and
USA	on adolescent sleep	data was collected,	2.sleep diaries at home	daytime sleepiness. The occurrence of
	patterns, sleepiness,	but not reported in	3.22-hour laboratory	REM sleep on MSLT indicates that
	and circadian phase	paper).	evaluation	clinicians should exercise caution in
	of a school transition		4.evening saliva samples	interpreting MSLT REM sleep in
	requiring an earlier		every 30 minutes in dim	adolescents studied on their usual
	start		light for determination of	schedule when that schedule involves
			dim light salivary melatonin	early rising enforced by alarm clocks,
			onset phase (DLSMO)	parents, or both.
			5.overnight sleep	
			monitoring	
			6.multiple sleep latency	
			test (MSLT)	

Chen	Normal, overweight	Adols 9–13yrs.	1.electrocardiography	171 adols; overweight/obese children
2012	and obese adols; to	Cross-sectional study	heart rate variability (as a	had significantly lower heart rate
Taiwan	explore the influence	with experimental	marker of autonomic	variability, which was positively
	of pubertal	(overweight/	function)	correlated with their physical activity
	development on	obese) and control	2.Pubertal Development	levels. Overweight/obesity adversely
	autonomic nervous	(normal weight)	Scale (SR)	affects the autonomic nervous system
	system function in	groups.	3.Physical Activity	function of children especially during
	overweight and		Questionnaire of Children	their pubertal development.
	obese children and		(SR)	
	the concurrent effects		4.BMI	
	on their physical			
	activity.			
Clavien	Adols 9–19. To	Cross-sectional	1.5-day dietary diary	193 adols; study indicates that the type
1996	investigate if	survey was	2.weighing of food intake	of diet which has been linked with
Switzerland	modifications in food	performed in the	(by participants)	several chronic diseases in adults living
	habits are associated	context of a	3.BMI	in developed countries already prevails
	with pubertal	prospective study of	4.Tanner stage (prof ax)	before pubertal maturation. This dietary
	maturation,	bone mass	5.macronutrient ax (from	pattern changes marginally during
	particularly in affluent	acquisition during	dietary intake)	pubertal development.
	societies.	adolescence.		

Coldwell	Adols 11–15yrs; to	Cross-sectional study	1.concentration of	143 participants; bone growth and
2009	assess perceptual,	using objective	oestrogen and	plasma leptin adjusted for body weight
USA	physiological and	measures and SR	progesterone (females),	were significantly lower in the low
	eating habit	questionnaires.	and testosterone (males)	preference group. Children with high and
	differences between		2.biomarker of bone-	low preference patterns did not differ in
	children preferring		growth (urine)	sensory aspects of sucrose perception,
	solutions high in		3.body fat %	nor did they differ in age, body mass
	sugar and children		4.puberty stage (Tanner	index percentile, or dietary restraint. The
	preferring solutions		stage, and Pubertal	change in sugar preference from high to
	low in sugar.		Development Scale – both	low during adolescence appears to be
			SR)	associated with the cessation of growth.
			5.dietary habits (Dutch	
			Eating Behaviors	
			Questionnaire)	
			6.Taste using Green's	
			Labeled Magnitude Scale	
			(LMS)	
			7.sreum leptin levels	
			8.Plasma insulin levels	

Costello	Adols 9–13 (at start)	Longitudinal study;	1.alcohol and drug use	1420 participants; Controlling for age,
2007	from Great Smoky	annual interviews	2.psychiatric disorders	Tanner stage predicted alcohol use
USA	Mountains Study.	until 16yrs with adols	3.life events	(including problem drinking) in both
	Puberty and alcohol	and parents.	4.blood assays of pubertal	genders, with more marked effects in
	use.		hormones	those who matured early, esp those with
			5.Tanner staging (self ax)	deviant behaviour peers. Lax supervision
				in girls, and family problems/poverty in
				boys were further predictive.
Cumming	Adols at 11 and	Longitudinal study	1.biological maturation (%	1351 adols; maturation was associated
SP	13yrs from the Avon	from birth. Data from	of predicted mature height)	with less PA and more sedentary time in
2014	Longitudinal Study of	age 11 and age	2.BMI	boys, but not girls; Maturity at 11 did not
UK	Parents and	13yrs in this study.	3.body composition (DXA	predict PA or sedentary behaviour at 13
	Children; to measure		scan)	in either gender.
	the associations		4.PA/sedentary time	
	between maturation,			
	body composition			
	and PA.			
		1		

Cumming	Adolescents, 12–18	Review; methods not	1.Maturation	A biocultural model is presented.
SP	years.	specified in detail.	2.Physical activity	Differences in maturation have direct
2012	Maturity and physical		3.Direct effects	effects on physical activity, although
UK	activity		4.Mediating effects	other associated effects may be both
			5.Moderating effects	direct and indirect.
Cumming	Adolescents, 11–15	Cross-sectional study	1.Estimated maturity: % of	407 female adols. Advanced maturation
SP	yrs mean age		predicted adult height	is associated with less involvement in
2011	13.2yrs. physical self-		2.Physical Activity	PA, and perceptions of being less
UK	concept, biological		Questionnaire for	attractive. Perceptions of attractiveness
	maturity status, and		Adolescents	and sport competence predicted more
	PA.		3.Children and Youth's	positive self-worth, which predicted
			Physical Self-Perceptions	greater involvement in PA.
			Scale	
			4.BMI	
Cumming	Adols 13–15yrs; to	Pilot study;	1.Leisure-Time Exercise	185 adols. Maturity status was positively,
SP	examine relations	longitudinal study;	Questionnaire	but weakly, associated with exercise in
2009	btwn biological	two time points, 1 yr	2.Estimated maturity: % of	males, and negatively associated with
UK	maturity, body size	apart.	predicted adult height	strenuous exercise in females. Early
	and exercise		3.BMI	maturation was associated with greater
	behaviour.			overweight and obesity.

Cummir	ng	Adols, mean age	Cross-sectional	1.Leisure-Time Exercise	186 adolescents; when examined in a
SP		14.04yrs; to examine	study.	Questionnaire	same chronological age cohort, boys
2008		gender and biological	Questionnaires.	2.Estimated maturity: % of	reported significantly greater exercise
UK		age in relation to		predicted adult height	behaviour than boys. When biological
		exercise behaviour.			age was controlled for, gender
					differences were no longer apparent.

Cuypers	Adols 13–19 years	Cross-sectional and	1.Genetic predisposition	1643 adols; results suggest that obesity-
2012	old from the HUNT	longitudinal	score	susceptibility genetic loci established in
Norway	study; to investigate	approaches.	2.BMI	adults affect BMI and WC already in
	whether obesity-		3.Waist circumference	adolescence. However, an association
	susceptible genetic		4.Pubertal Development	with change in adiposity-related traits
	loci in adults		Scale (SR)	from adolescence to adulthood could not
	influence adiposity			be verified for these loci. Neither could
	traits in adolescence			an attenuating effect of physical activity
	and influence BMI/			on the association between the obesity-
	waist circumference			susceptibility genes and body fat
	(WC) from			estimates be reveal.
	adolescence into			
	young adulthood.			
	Also examined			
	whether PA modifies			
	the effects of these			
	genetic loci on			
	adiposity-related			
	traits.			
		1		

Dahl &	Adols; sleep	Discussion and	1.Biological changes in	There appears to be a biological basis
Lewin	regulation, biological	review.	sleep regulation during	for the change from lark to owl type
2002	and psychosocial		pubertal development	sleeping patterns in adolescence. Depth
USA	domains.		2.Circadian	of sleep decreases during adolescence.
			changes/regulation	Insufficient sleep can adversely affect
			(biological clock)	mood and concentration ability.
			3.Emotional domains	
Davison	Adol girls 11–13yrs.	Longitudinal cohort	1.Tanner breast stage	178 girls; more advanced pubertal
2007	Study examines girls'	study of 2	2.Estradiol levels	development at age 11 associated with
USA	response to puberty	timepoints:11 and	3. Pubertal stage on	lower psychological well-being at 13yrs.
	and enjoyment of PA.	13yrs.	Pubertal Development	Subsequent lower enjoyment of PA, and
			Scale (ax by mothers)	lower moderate-to-vigorous PA levels.
			4.psychological well-being	
			5. Physical Activity	
			Enjoyment Scale	
			6.Daily minutes of	
			moderate-to-vigorous PA	
		1		

Devlin	Female adols 11–	Longitudinal study	1.DXA bone densitometer	Oestrogen levels in the first year after
2010	13yrs at start of	over 10yrs; biannual	readings	menarche and PA are positively
USA	study, from Young	data collection for the	2.Hip Structure Analysis	associated with bone strength in young
	Women's Health	first 4 years (ages	3.Age at menarche (SR)	adulthood, such that hormone levels may
	Study; to assess	12–16) and annual	4.estradiol levels (urine)	modify human osteogenic responses to
	femoral neck strength	thereafter (ages 17–	5.calcium levels (urine)	exercise.
	index at age 17 in	22), for a total of 15	6.vitamin D intake (SR)	
	young women with	study visits from ages	7.integrated physical	
	varying PA levels and	12 to 22.	activity score (SR +	
	oestrogen levels in 3		objective measures)	
	years after			
	menarche.			

De Vriendt	Adols 12–17yrs from	Cross-sectional data	1.24h dietary recall diary	704 adols; in both boys and girls,
2012	the Healthy Lifestyle	from adols from	over 2 days	perceived stress was a significant
Belgium/	in Europe by Nutrition	schools in five	2.Diet Quality Index for	independent negative predictor for their
European	in Adolescence study	European cities	Adolescents (DQI-A)	overall diet quality. This inverse
countries	(HELENA).	(Ghent, Stockholm,	3.Adolescent Stress	relationship was observed for all dietary
	To examine the	Zaragoza, Athens	Questionnaire.	components, except for dietary diversity
	relationship between	and Vienna).	4.Height	in boys, and it was unaltered when
	perceived stress and		5.Weight	additionally adjusted for MVPA or sleep
	diet quality in		6.Pubertal stage (ax not	duration.
	European		detailed)	
	adolescents.		7.Parental education level	
			8.moderate-to-vigorous	
			physical activity (MVPA)	
			9.sleep duration	

De Water	Adols 11–16yrs.	Cross-sectional	1.alcohol use	1)797 Dutch adols
2013	1) To examine	study. Questionnaire	2.age	2)168 Dutch adols
Holland	pubertal maturation	data.	3.salivary sex steroid	Advanced pubertal maturation is related
	and associations with		levels	to increased alcohol use in both boys
	levels of alcohol use,		4.Pubertal Development	and girls. Controlling for age, higher
	when controlling for		Scale (PDS) (SR)	testosterone and estradiol levels
	age. Also,			correlated with the onset of alcohol use
	2) relationships			in boys. Higher estradiol levels were
	between hormones			associated with larger quantity of alcohol
	and alcohol use.			use in boys. Correlations between sex
				steroids and alcohol use were not
				significant in girls.
Dornbusch	12–17yr old youths;	Survey data from US	1.dating (rather than	6,710 participants; Individual levels of
1981	dating, age and	National Health	sexual activity)	sexual maturation add little to explain
USA	sexual maturation.	Examination Survey.	2.age	variation in dating after age has been
			3.sexual development	taken into account. Social pressures
			(physician Tanner ax)	determine onset of dating behaviour.
			4.social class	
			5.ethnicity	

Drescher	Adols 10–17 yrs;	Cross-sectional	1.parent reported sleep	319 participants; total sleep time was
2011	sleep duration and	study. Data from the	score	inversely related to BMIz score, Hispanic
USA	obesity.	Tucson Children'	2.BMIz score	ethnicity, screen time and caffeine
		Assessment of Sleep	3.screen time (in	consumption. Results varied with age.
		Apnea study.	association with PA ax)	
			4.dietary and caffeine	
			intake	
			5.exercise and sleep	
			habits	
			6.anthropometic measures	
Duke	Male adols 9–18yrs;	SR; Human studies	1.timed testosterone	27 publications reviewed. Only one
2014	effect of testosterone	only; community	measure (serum or saliva)	longitudinal study. No consistent
Australia	on behaviour and	studies involving	2.externalizing behaviours	relationships observed.
	mood in	mood and/or	3.alcohol and other drug	
	adolescence.	behavioural ax, plus	use	
		testosterone level	4.self-image/social	
		measurement.	behaviours	
			5.mood/affect	

Dumith	Adols at 11 and	Cohort longitudinal	1.change in PA status	4120 adols. Maternal PA change
2012	15yrs; predictors of	study with 2 time	(self-report)	associated with positive adol PA change;
USA	change in PA.	points: 11 and 15yrs.	2.amount of moderate-to-	higher male maturation and later
		Each data collection	strenuous activity	menarche in females were associated
		period lasted 8	3.skin colour	with positive PA change. Adols remained
		months.	4.socio-economic level	inactive if they were fearful of
		Interviews and	5.maternal PA	neighbourhood, and became inactive if
		questionnaires to	6.time outdoors	they were of higher S-E status (males) or
		adols and mothers.	7.fear of living in	had more screen time (females).
			neighbourhood	
			8.BMI	
			9.Tanner stage	
			10.screen time	

Duncan	Adols 12–17yrs;	Cohort sequential	1.PA survey based on	371 adols; PA activity declined
2007	factors affecting PA	study from 3 age	Youth Risk Behaviour	significantly from 12 to 17yrs. Males had
USA	patterns.	cohorts: 10, 12 and	Survey (self-report data)	initial higher PA levels. Early maturing
		14yrs. Data gather	2.Pedometer data	boys had greater initial PA levels, and
		annually over 4 year	3.BMI	greater decline.
		period.	4.Pubertal Development	
			Scale (self-report)	
			5.self-efficacy/barriers	
			6.parental/friend PA (self-	
			report)	
			7.Parental/friend social	
			support of adol (in relation	
			to PA)	

Eisenmann	Adols; examining the	A meta-review of	1.Age-Related decline in	Hereditary factors contribute to the
& Wickel	biological correlates	reviews since 1998.	PA, and the Influence of	physical activity (and inactivity)
2009	or determinants of		biological maturity	phenotype and candidate genes are now
	PA in youth, and the		2.Genetic factors	being identified. Animal models indicate
	physical activity		influencing PA	that maternal exposure to various
	phenotype.		3.Artificial selection	environmental factors may alter offspring
			experiments in animals	physical activity. Key brain structures
			4.Individual or	and biomolecules involved in motivation,
			environmental issues	reward, and/or energy balance are also
			5.Non Exercise Activity	critical to understanding the biological
			Thermogenesis (NEAT)	basis of PA.
			6.Prenatal Environmental	
			and Epigenetic influences	

Erlandson	Adols 8–15 yrs from	Longitudinal design	1.chronological age	187 adols. Physical activity decreased
2011	the Saskatchewan	incorporating eight	2.biological age (age at	with increasing CA from late childhood
Canada	Pediatric Bone	age cohorts. The	peak height velocity)	into adolescence, with girls being less
	Mineral Accrual	cohorts were aged	3.BMI	active than boys. Accounting for
	Study.	between 8 and 15 yr	4.Physical Activity	differences in the timing of biological
	To examine PA from	at study entry. 8 yrs	Questionnaire for Children	maturity had little effect on tracking
	childhood to late	of serial data	(SR)	physical; maturity may be more important
	adolescence when	collection.	5.Physical Activity	in physical activity participation in
	aligned on		Questionnaire for	females than males.
	chronological and		Adolescents (SR)	
	biological age.			
Fawkner	Adol. females 11–	Longitudinal study;	1.Physical Activity	208 female adols; Relatively more
2015	12yrs; effect of	data collected at	Questionnaire for Children	mature girls may be more active than
UK	maturation on PA,	three 6 monthly	2.Pubertal Development	their less mature peers.
	and effects of self-	intervals.	Scale (self-report)	
	perception.		3. Children and Youth's	
			Physical elf-Perception	
			Profile	
			4.BMI	
			5.Skin fold thickness	

Feinberg	Adols 9–18yrs;	Longitudinal study;	1.REM sleep duration	67 adols; School night total sleep time
2011	maturational sleep	two cohorts of 9yrs	2.NREM sleep duration	declined with age, entirely produced by
USA	durations of NREM	and 12yrs at age of		reducing NREM sleep. REM sleep
	and REM sleep.	entry were followed		increased slightly but significantly. During
		up for 6yrs; twice		extended sleep, both durations
		yearly data collection		extended; NREM did not change with
		on 4 consecutive		age, whereas REM durations did
		nights; school and		increase significantly.
		extended sleep (non-		
		school) nights.		

Feinberg	Examining the causal	Longitudinal data;	1. Pubertal (Tanner) stage,	NREM delta power density (DPD) did not
2006 USA	relationship between	Cohorts of 9- and 12-	2. height, and weight	change significantly over ages 9–11
	sexual maturation	year-old children (n		years, and its level did not differ in boys
	and decline in delta	31, 38) were studied		and girls. DPD declined by 25% between
	EEG of NREM sleep.	with in-home sleep		ages 12 and 14 years. Mixed effect
		EEG recordings at 6-		analyses demonstrated that DPD was
		mo intervals over 2		strongly related to age with Tanner
		years.		stage, height, weight and body mass
				index controlled but that none of these
				measures of physical and sexual
				development was related to DPD with
				age controlled.
Frey	Females 5–51yrs; to	Cross-sectional	1.sleep preferences	1187 females; results show that in
2009	assess the	survey.	(weekdays and free days)	contrast to prepubertal children,
Switzerland	relationship between		using Munich Chronotype	adolescent females exhibit a striking
	puberty and the		Questionnaire (SR)	progression in delaying their sleep phase
	changes in sleep		2.age at menarche (SR)	preference until 5 years after menarche.
	phase preferences			Thereafter, the sleep phase preference
	during female			switches to advancing
	maturation and			
	adulthood.			

Gebremari-	Norwegian adols	Longitudinal study;	1.PA levels (self-report)	885 students; enjoyment of PA, the
am	from the Health in	data from 3 time	2.pubertal stage (Pubertal	effects of support and environmental
2012	Adolescents study.	points over 20	Development Scale)	factors remained moderately stable in
Norway	Mean age at baseline	months.	3.BMI	the transition between childhood and
	= 11.2 yrs. Change		4.social support (from	adolescence. Small decreases in
	and correlates in PA,		friends, parents, teachers)	enjoyment of PA were noted for girls
	including impact of		5.environmental	
	pubertal status.		opportunity ax	
			6.social capital measure	
Golley	Young people 9–	Cross-sectional	1.two day food intake	2,200 adolescents; late bed, late risers
2013	16yrs; part of	analysis of nationally	2.four day sleep-wake	had higher BMI scores and lower diet
Australia	Australian National	representative survey	timings	quality, independent of sleep duration or
	Children's Nutrition	data.	3.anthropometric data inc	activity level.
	and Physical Activity		BMIz,	
	Survey. Sleep timing		4.PA levels	
	and diet quality,			
	weight/adiposity.			

Graber &	Adol girls. To	Review and	Puberty and:	Sexuality begins to develop more fully
Sontag	examine the	comparison of	1.body image	during puberty, develops extensively
2006	psychological and	models that link	2.peer relationships	over adolescence, and is interconnected
USA	social impacts of	puberty and sexuality	3.romantic relationships	with changes in self and social context
	pubertal	e.g. models that	4.emotional development	during this period. As such, sexuality is
	development on	indicate that sexual	5.sexuality	likely to have important connections to
	changes in girls'	desires and		engagement in sexual behaviours and
	feelings about	behaviours are in		experiences, which in turn stimulate re-
	themselves (their	part the result of		evaluation of beliefs and attitudes about
	bodies) and their	brain development		one's sexuality.
	sexuality.	and physiological		
		processes.		
Grassi	Adols 14–18yrs;	Cross-sectional	1.VO _{2 max}	290 adols; aerobic fitness declined with
2006	aerobic fitness and	study.	2.body mass	age in both sexes. Decline greater in
Italy	somatic growth.		3.standing height	females. A negative association between
			3.BMI	BMI and VO _{2 max} was found in overweight
				adols. Almost all participants could be
				labelled as sedentary due to lack of PA.

Hagenauer	Adol. human and	A review of sleep	1.homostatic 'sleep	Sleep parameters change during
2013	rodent studies. To	patterns in human	pressure'	adolescents in a hormone-dependent
USA	examine the	and laboratory	2.circadian rhythm	manner; changes in the regulation of
	developmental forces	animals.	3.sleep timing and	sleep by the circadian timekeeping
	driving adolescent		architecture	system are also present, and both
	sleep patterns using			processes may be responsible for
	a cross species			adolescent sleep patterns.
	comparison.			
Hagenauer	Adol. human and	Review of sleep	1.homeostatic drive to	The delayed sleep phase in adolescence
2009	animal studies	patterns in	sleep	is a likely common phenomenon across
USA		adolescent humans	2.circadian regulation of	mammals, not specific to humans.
		and animals.	sleep	
			3.developmental changes	
Halpern	Adols under 15	Longitudinal data;	1.Age, gender, race	4,118 participants. Advanced physical
2007	years; Pubertal	questionnaires from	2.Parental education	maturity associated with higher risk, esp.
USA	timing and risk	'Add Health' study,	3.Perceived physical	in relation to alcohol/substance use, and
	behaviour, esp.	1994–1996.	maturity (proxy for pubertal	in girls with older partner.
	sexual risk and		status)	
	substance use.		4.Age of partner	
			5.Risk behaviour	

Halpern	Adol. males 12–14	Longitudinal cohort	1.monthly salivary	127 adol. males. Over 80%
1998	years at start of	study; 2–3 year	testosterone levels	prepubescent at start of study (by
USA	study. To examine	follow-up.	2.weekly behaviour	testosterone levels). Higher levels of
	the relationship	Questionnaires,	checklist, including sexual	salivary testosterone were associated
	between testosterone	interviews and	activity	with sexual activity initiation and more
	and sexual activity	hormone levels	3.Tanner stage	frequent coital and non coital activity.
	through more	taken. Appears to be		
	frequent data	an extension of		
	collection.	earlier research, as		
		detailed in Halpern et		
		al 1993.		

Halpern	Post menarcheal	Longitudinal study	1.Sexual behaviour,	200 female adols. Testosterone and
1997	adol females.	over 2-year period,	ideation and motivation	changes in testosterone were
USA	To examine pubertal	involving	2.religious attendance	significantly related to the timing of
	rise in testosterone	questionnaires and	3.Tanner stage (SR)	subsequent transition to first coitus for
	and associations with	interviews.	4.Testosterone levels	blacks and whites females. Frequency of
	subsequent		(specifically timed blood	attendance at religious services operated
	increases in female		samples)	as a social control variable, and was
	sexual interest and			found to moderate effects of testosterone
	activity, within the			on sexual transition.
	context of a social			
	control variable.			
Halpern	Adol males, 12–13	Longitudinal cohort	1.bi-annual blood	100 adol. males. Pubertal development
1993	years. To examine if	study. Behavioural	testosterone levels	is significantly related to sexual ideation,
USA	sexual activity is	questionnaires and	2.bi-annual behaviour	non-coital behaviour, and transition to
	initiated and	blood samples (for	checklist, including sexual	sexual intercourse. Hormone levels did
	increases in relation	testosterone)	activity	not predict changes in ideation or non-
	to testosterone	collected every 6	3.Tanner stage	coital sexual activity over the 3 years of
	levels.	months for 3 years.		the study.
Harrison	Influence of genetic	Review of other	Model includes 6	Influences at cellular, individual (child),
----------	-----------------------	------------------------	---------------------------	---
2011	and environmental	studies/findings, plus	domains/levels:	family (clan), community, country, and
USA	factors on weight and	ecological model	1.Cellular	cultural levels are incorporated into the
	obesity through	formulation.	2.Child	Six-Cs model.
	childhood and		3.Clan	
	adolescence.		4.Community	
			5.Country	
			6.Culture	
Hinckers	Adolescent cohort at	Prospective study;	1.average alcohol	243 adols. Lower response to alcohol
2006	age 16 from the	cohort data at one	consumption over 6	was found amongst carriers of two long
Germany	Mannheim Study of	time-point.	months using Lifetime	alleles of 5-HTT.
	Risk Children.		Drinking History Scale	
			2.Family Adversity Index	
			3.Externalizing behaviour	
			4.Blood samples for	
			genotyping	

Irons	Adopted adolescents	A prospective	1. peripheral blood or	356 participants. Possession of the
2012	and young adults	longitudinal study of	buccal swab for	ALDH2 allele has been repeatedly
USA	from The Sibling	sibling pairs,	genotyping	shown to be associated with lower risk
	Interaction and	including both	2.structured interviews	for alcohol dependence and reduced
	Behavior Study	adopted and non-	including Diagnostic and	alcohol use. The protective effect of the
	(SIBS); to examine	adopted adolescents,	Statistical Manual of	ALDH2 allele increases over the course
	the effect of ALDH2	and their parent.	Mental Disorder	of adolescence and young adulthood and
	polymorphism upon	Measures from 3	questionnaire	is modified by the environmental
	drinking, and	time points over 7 yrs	3. modified version of the	influence of parental alcohol use and
	relationship	(?)	Substance Abuse Module	misuse.
	to developmental		4.peer behaviour	
	stage and		questionnaire	
	environmental			
	context.			

Jaszyna-	Adol girls 14–16yrs,	Cross-sectional	1.age at menarche	71 females; significant relationship
Gasior	participating in a	study; data taken at	2.smoking behaviour and	between age at menarche and age of
2009	smoking cessation	one point from 12	history	onset of daily smoking; no significant
USA	trial. To explore the	week trial. Interviews	3.Fagerstrom Test for	associations with having weight
	relationship between	and questionnaires.	Nicotine Dependence	concerns.
	age of menarche,		4.Eating disorders module	
	smoking and		from the Diagnostic	
	influence of weight		Interview for the Child and	
	concerns.		the Adolescent	
Johnson	Young adults 18–	Longitudinal study;	1.weight	521 young adults; height increased
2012	30yrs; To examine	annual data from 0–	2.height	during puberty, with overweight or obese
USA	difference in skeletal	18yrs, plus data	3.skeletal-chronological	young adults being about 3cm taller at
	maturity and stature	during young	age	puberty than their normal weight
	from 0-18yrs in	adulthood. Part of the	4.BMI	counterparts. These differences
	normal and	Fels Longitudinal		diminished by age 18yrs, with no
	overweight young	Study.		significant difference at that age.
	adults.			Overweight and obese adults were more
				advanced in terms of skeletal maturity
				throughout childhood, peaking during
				puberty.

Jurimae	Adol boys aged 10-	Controlled study with	1.physical activity	56 adol. boys; ghrelin concentration
2009	16yrs; to assess the	swimmers and non-	2.ghrelin levels (blood	decreased during puberty in physically
Estonia	influence of regular	swimming	assays)	inactive boys, while in regularly
	physical activity on	comparison group.	3.Tanner pubertal stage	physically active boys it remained
	plasma ghrelin		(SR)	relatively unchanged. Ghrelin appears to
	concentration in pre-		4.BMD (by DXR)	be an important hormonal predictor for
	pubertal and pubertal		5.BMI	BMD in physically active boys, while
	boys. In addition, the		6.IGF-1 (Insulin-like	BMD is mostly determined by IGF-I in
	impact of ghrelin		Growth Factor)	physically inactive boys.
	concentration on		7.VO ₂ (activity levels)	
	bone mineral density			
	(BMD) was			
	examined.			

Katzmarzyk	Physical activity and	Review, plus	Overweight/obesity,	In general, there is a negative
2008	obesity in children,	summary statement	measured by:	relationship between measures of
USA	typically 5–17yrs.	and	1.skinfold thickness	physical activity and adiposity in children.
		recommendations	2.weight for age 3.weight	In addition, the available data suggest
			for height	that high levels of PA reduce the
			4.body mass index (BMI)	likelihood of weight gain over time.
			5.ethnicity	
			6.genetic influences	
			7. Behavioural, social, and	
			environmental	
			determinants	
King	To examine the	Review and	1.gherlin and obestatin	Gherlin and obestatin are associated
2010	influence of ghrelin	discussion.	levels and influence	with alterations in the drive to eat (i.e.
	and obestatin on		2.eating behaviours	hunger), eating behaviours and appetite
	appetite control, the		3.metabolic rates	regulation. Furthermore, there is some
	regulation of energy,		4.physical activity	evidence that these peptides might also
	and physical activity			be associated with physical activity
	in adolescence.			behaviours and metabolism.

Knowles	Adol. girls, 11–12yrs.	Longitudinal study:	1.Physical Activity	150 adol. girls; decrease on overall PA,
2009	To investigate the	two time points, 12	Questionnaire for Children	not influenced by maturational status or
UK	influence of	months apart.	2.Youth Physical Self-	physical characteristics. Physical self-
	maturation on		Perception Profile	perception partially accounted for this.
	physical self-		3.Pubertal Development	Body mass was an important predictor of
	perceptions and PA		Scale	change.
	in early adol. girls.		4.body mass, waist	
			circumference, skinfold	
			thickness	
Knutson	Adols 12–16yrs. To	Data from the	1.pubertal development	Data from 2,339 adols. Females had
2005	examine associations	National Longitudinal	(self-report: questions	increasing problems with sleep in relation
USA	between growth and	Study of Adolescent	similar to Pubertal	to increasing development, but not
	development stage	Health (data from	Development Scale)	males. Both genders had a negative
	and sleep.	1994–96); 2	2.height	association between sleep duration and
		interviews, 1yr apart.	3.sleep duration	development. No association between
			4.insomnia	sleep and height velocity was noted.
			5.tiredness	
			6.insufficient sleep	

Kohl &	Review of evidence	SR: methods of	1.physiological or	A variety of factors are potential
Hobbs	of potential	review not detailed.	developmental factors	determinants of physical activity in
(1998)	determinants of		2.environmental factors	children and adolescents. Interaction
USA	physical activity in		3.psychological, social,	between these factors is likely.
	children and		demographic factors	Correlations rather than true predictors
	adolescents.			are evident in the examined evidence.
Labbrozzi	Early and mid-adol.	Cross-sectional study	1.BMI	134 adol. girls; older girls displayed
2013	girls aged 11 and	of two age cohorts.	2.Tanner stage	poorer physical perception, lower
Italy	13yrs; to examine		3.Physical Activity	motivation and enjoyment of PA at 11yrs,
	self-perception and		Enjoyment Scale (PACES)	more developed girls displayed poorer
	motivation towards		4.Physical Self-Perception	physical perception relating to body fat,
	PA.		Questionnaire	self-concept, appearance, and lower
			5.Situational Intrinsic	PACES scores.
			Motivation Scale	

Laberge	Adols 10–13yrs. (Part	Longitudinal study	1.sleep patterns and habits	Results indicated that nocturnal sleep
2001	of larger longitudinal	over 3 yrs, with	questionnaire, including	times decreased, bedtimes were delayed
Canada	study). To examine	annual data	sleep disturbances during	and differences between weekend and
	the developmental	collection.	the previous year	school day sleep schedules
	changes of sleep		2. Pubertal Development	progressively increased with age. Girls
	patterns as a function		Scale (self and maternal	had longer weekend time in bed and
	of gender and		ax); twice yearly ax for 3	later weekend wake time than boys.
	puberty.		yrs	Subjects with higher pubertal status
				showed longer weekend TIB and later
				weekend wake time.
Lantis	Adols 14–17 years;	Cross-sectional study	1.sleep habit survey	85 adolescents; age, gender and race
2009	to examine	including a 7-day	2.BMI	were associated with hunger, satiety and
USA	associations between	sleep-hunger-satiety	3.Calorie and energy	cravings. Greater total food craving score
	total sleep time and	diary.	expenditure interviews	was associated with increased daytime
	eating behaviours		4.Food Craving Inventory	sleep.
	(hunger, satiety,		(FCI-II)	
	cravings, calorie		5.7 day sleep-hunger-	
	intake).		satiety diary	

Laucht	Participants drawn	Epidemiological	1.genotype: 5-HTTLPR	Male adols with LL genotype 5-HTTLPR
2009	from 'Children at	cohort study; current	2.Interview	and adversity exhibited more hazardous
Germany	Risk' study (birth-	data from one time	3.45-day drink history, incl.	drinking than those with S-allele, or
	adulthood – same	point (aged 19yrs).	total number of drinks and	without exposure to adversity.
	overall study as		drink binging days	
	Blomeyer et al, 2013		4.family adversity	
	and Buchmann et al,			
	2009); current data			
	from age 19 years			
	relating to genetic			
	factors, adversity and			
	alcohol consumption.			

Li	Adols from a Chinese	Longitudinal study	1.200-item survey,	2339 Chinese adols; 603 Caucasian
2011	Han population		including baseline smoking	adols. The calcyon neuron-specific
USA and	(Wuhan smoking		behaviour, social and	vesicular protein gene (CALY) may
China	Prevention Trial – av.		economic status etc	influence smoking initiation in adol.
	age 12.6) and		2.buccal cells for DNA	females
	Caucasian adols		extraction	
	living in California			
	(Children's Health			
	Study – mean age			
	10.2). Av. Follow-up			
	7.41 years. Role of			
	genetic factors and			
	smoking initiation			

Lumeng	Adols in 3rd and 6th	Longitudinal study;	1.sleep duration and	785 adol. participants; shorter sleep
2007	grade (approx. 9 and	data from two time	problems (maternal report)	duration in 6th grade was independently
USA	12yrs), from the	points within a	from Children's Sleep	associated with a greater likelihood of
	National Institute of	larger/longer study.	Habits Questionnaire	overweight. Shorter sleep duration in 3rd
	Child Health and		(CSHQ)	grade was also independently associated
	Human Development		2.chaos at home (The	with overweight in 6th grade,
	Study of Early Child		CHAOS Scale)	independent of the child's weight status
	Care and Youth		3.quality of the home	in 3rd grade. Sleep problems were not
	Development; to test		environment (Mid-	associated with overweight.
	the independent		Childhood Home	
	associations of sleep		Observation for	
	duration and		Measurement of the	
	problems with		Environment)	
	overweight risk in		4.lax-parenting subscale	
	children.		score of the Raising	
			Children Checklist	
			5.Child Behavior Checklist	
			6.BMI	

Lytle	Adols 10–16yrs, from	Cross-sectional using	1.sleep questionnaire	349 adols and significant adults;
2011	the Identifying	questionnaires.	2.BMI	Particularly for middle-school boys and
USA	Determinants of		3.energy intake (3 dietary	girls, inadequate sleep is a risk factor for
	Eating and Activity		recalls)	early adolescent obesity.
	(IDEA) study; to		4.energy expenditure	
	examine the		(Actigraph accelerometer)	
	relationship between		5.Kandel–Davies scale	
	weight-related		(depression)	
	variables and sleep		6. Pubertal Development	
	variables.		Scale (SR)	
Machado	Adols 13–16yrs. To	Cross-sectional study	1.Actigraph accelerometer	302 participants; males spent more time
Rodrigues	examine the	with participants	readings over five	in moderate to vigorous PA and less time
2010	contribution of	divided into two	consecutive days	in sedentary behaviour than females.
Portugal	somatic maturation	groups, 13–14 and	2.Percentage of predicted	However, sex differences were
	and sex differences	15–16 years.	mature (adult) height (as	attenuated when maturation was
	in sedentary		maturity measure)	controlled; thus suggesting that maturity
	behaviour and PA.		3.Weight	may play an important role in adolescent
			4.Chronological age	behaviours.

Maestu	Adol. boys 11–13yrs.	Cross-sectional	1.Body composition by	261 boys. No ACE genotype or allele
2013	To examine the	study.	DXA	effect on higher PA levels (i.e. moderate
Estonia	association between		2. Tanner pubertal stage	and vigorous physical activity), which are
	the angiotensin I-		(professional ax)	considered as the most important activity
	converting enzyme		3.cardiovascular fitness on	levels related to cardiovascular health
	(ACE) gene		cycle ergometer	risks in children. In contrast, carrying the
	polymorphism and		4.7-day accelerometry	I allele was instead related to sedentary
	PA levels		measures	behaviour. Carriers of the D allele had
	in boys at early		5. D or I allele presence	significantly higher light physical activity
	pubertal stage.		(blood assays)	levels.
			6.screen time (as proxy for	
			sedentary activity)	
Martin	Early and mid-adols	Cross-sectional	1.Sensation Seeking Scale	208 adols; sensation seeking was higher
2002	11–14yrs; to examine	study.	2.Pubertal Development	in males and females who reported
USA	the relationship	Questionnaires and	Scale (adol and parent)	alcohol and nicotine use, and higher in
	between substance	standardized	3. nicotine, alcohol &	males who used marijuana. Sensation
	use, sensation	measures used.	marijuana use (self-report)	seeking was positively associated with
	seeking and pubertal			pubertal development in both sexes,
	development.			even when controlling for age, and
				mediated the relationship between
				pubertal development and drug use.

Maume	Teens 12–15 years;	Longitudinal study	1.sleep habits	974 participants; social relational factors
2013	part of the Study of	from birth to 15yrs;	2.parental support	out-perform developmental factors in
USA	Early Child Care and	data for this analysis	3.school/peer support	determining youths' sleep patterns.
	Youth Development.	from two time points:	4.Time use (TV/IT use)	Stressful social ties, excess school
	Examined sleep	12yrs and 15yrs.	5.Delayed phase	homework, TV and computer use, and
	patterns, social ties		preference (sleep-wake	family poverty, disrupt sleep in general.
	and developmental		patterns)	School, peer and family support
	stage.		(1-5 All self-report)	improved duration and quality of sleep.
			6.Tanner stage (prof ax)	
McCabe	Adol. teens;	Cross-sectional study	1.pubertal development	1,185 adols; girls were more likely to
2002	examining the impact	with two cohorts from	(SR)	adopt strategies to lose weight, boys to
Australian	of pubertal	grades 7 & 9 (aged	2.media and peer influence	increase muscle, but not weight. Main
	development, peer	approx. 12 and	3.body dissatisfaction	predictor was puberty for boys; girls were
	relationships, and	15yrs). SR	4.weight control	influenced by puberty and media to lose
	media pressures on	questionnaires were		weight. In older girls predictors of body
	dissatisfaction and	used.		dissatisfaction and desire to increase
	behaviours.			muscle tone were perceived popularity
				with opposite sex.

McCartney	Girls at Tanner stage	Cross-sectional study	1.Lutenising hormone	13 girls at Tanner stage 1–2 (8 non-
2009	1–2, and 3–5; to		blood levels at 10 min	obese, 5 obese); 44 girls at Tanner stage
USA	examine the		intervals during overnight	3–5 (32 non-obese, and 12 obese).
	characteristics of		period	
	lutenising hormone		2.BMI	
	during puberty.			
Miller	Children and adols	Cross-sectional with	1.Serum leptin	506 lean and obese adols; Reports of
2014	7–18yrs, participants	convenience sample.	2.Adiposity (dual-energy X-	LOC eating were associated with higher
	in several studies of		ray absorptiometry or air	fasting leptin in youth, beyond the
	eating behaviour and		displacement	contributions of body weight. The
	obesity conducted at		plethysmography)	relationship between LOC eating and
	the National Institute		3.LOC eating (Eating	leptin appeared to be significant for
	of Child Health and		Disorder Examination	females only.
	Human		interviews)	
	Development. To		4.BMI	
	examine associations		5.Tanner Scale (prof ax)	
	between leptin and			
	loss of control (LOC)			
	eating.			

Moore	Adol. girls from the	Sibling-comparison	1.age at menarche	923 sibling pairs. Shared genetic
2014	National Longitudinal	study, to establish	2.perceived pubertal timing	pathways influencing age at menarche
USA	Study of Adol. health.	genetic factors.	3.age at first intercourse	and perceived pubertal timing, predicted
	Pubertal timing,	Longitudinal: 4 time-	4.dating and sexual activity	age of first sex. Genetic factors relating
	sexual behaviour,	points over 14 years.		only to perceived pubertal timing
	and genetic			predicted dating, romantic and non-
	influences.			romantic sex.
Moss	Pre-pubertal and	Longitudinal study of	1.paternal drug and	298 participants of high and low-average
1999	adol. boys 10–12yrs	prepubescent boys,	alcohol use	risk. Decreased salivary cortisol
USA	initially; to examine	10–12 years, with	2.salivary cortisol levels	response to an anticipated stressor was
	salivary cortisol	follow-up after 4	3.adolescent substance	lower in sons with substance use father,
	under-reactivity and	years.	use	and was associated with regular
	substance use.			cigarette and marijuana use.
		1		

Murdey	Adols in 3 age	Phase 1 of a	1.BMI	119 participants; after controlling for
2004	groups: 10–11yrs;	longitudinal study	2.percentage body fat	sleep time, no differences in sedentary
UK	12–13yrs and 14–15.	measuring changes	3.sedentary behaviour	time were seen for puberty onset or
	To investigate the	in adolescents' free-	4.sleep time	increased pubertal development.
	effects of age,	time behaviour over	5.body image (using the	Correlations between pubertal status,
	puberty, gender,	an 18-month period.	Children's Physical Self-	body composition, and body image were
	body composition,		Perception Profile)	stronger in girls than in boys.
	and sleep on		6.pubertal status (SR)	Correlations between body image and
	sedentary behaviour.			sedentary behaviour were not strong
				enough to infer behavioural choice
				differences
				differences.
Muratoa &	Adol. girls 9–	Cross-sectional	1.Age, body weight, height	254 adol. girls; body weight, height, and
Muratoa & Araki	Adol. girls 9– 15yrs.To examine the	Cross-sectional design; questionnaire	1.Age, body weight, height 2.hours of sleep, sleep	254 adol. girls; body weight, height, and hours of sleep were significantly related
Muratoa & Araki 1993	Adol. girls 9– 15yrs.To examine the effects of age, body	Cross-sectional design; questionnaire data.	1.Age, body weight, height2.hours of sleep, sleepconditions	254 adol. girls; body weight, height, and hours of sleep were significantly related to the presence/ absence of menarche
Muratoa & Araki 1993 Japan	Adol. girls 9– 15yrs.To examine the effects of age, body weight, height, hours	Cross-sectional design; questionnaire data.	1.Age, body weight, height2.hours of sleep, sleepconditions3.presence or absence of	254 adol. girls; body weight, height, and hours of sleep were significantly related to the presence/ absence of menarche while controlling for the effects of age
Muratoa & Araki 1993 Japan	Adol. girls 9– 15yrs.To examine the effects of age, body weight, height, hours of sleep, and sleep	Cross-sectional design; questionnaire data.	1.Age, body weight, height2.hours of sleep, sleepconditions3.presence or absence ofmenarche	254 adol. girls; body weight, height, and hours of sleep were significantly related to the presence/ absence of menarche while controlling for the effects of age and sleep conditions.
Muratoa & Araki 1993 Japan	Adol. girls 9– 15yrs.To examine the effects of age, body weight, height, hours of sleep, and sleep conditions on the	Cross-sectional design; questionnaire data.	 1.Age, body weight, height 2.hours of sleep, sleep conditions 3.presence or absence of menarche All data from SR 	254 adol. girls; body weight, height, and hours of sleep were significantly related to the presence/ absence of menarche while controlling for the effects of age and sleep conditions. There was a time lag of about 2 years
Muratoa & Araki 1993 Japan	Adol. girls 9– 15yrs.To examine the effects of age, body weight, height, hours of sleep, and sleep conditions on the onset of menarche.	Cross-sectional design; questionnaire data.	 1.Age, body weight, height 2.hours of sleep, sleep conditions 3.presence or absence of menarche All data from SR questionnaire. 	254 adol. girls; body weight, height, and hours of sleep were significantly related to the presence/ absence of menarche while controlling for the effects of age and sleep conditions. There was a time lag of about 2 years between the abrupt decrease in hours of
Muratoa & Araki 1993 Japan	Adol. girls 9– 15yrs.To examine the effects of age, body weight, height, hours of sleep, and sleep conditions on the onset of menarche.	Cross-sectional design; questionnaire data.	 1.Age, body weight, height 2.hours of sleep, sleep conditions 3.presence or absence of menarche All data from SR questionnaire. 	254 adol. girls; body weight, height, and hours of sleep were significantly related to the presence/ absence of menarche while controlling for the effects of age and sleep conditions. There was a time lag of about 2 years between the abrupt decrease in hours of sleep and the maximal increase in the

Olds	Free living Australian	Observational cross-	1.sleep-wake pattern	2,200 adols; late-bed/late-risers
2011	adols aged 9–16yrs.	sectional study	groups: early-bed/early-	experienced 48 min/d more screen time
	To examine	involving use of time	rise; early-bed/late-rise;	and 27 min less moderate-to-vigorous
	relationships	interviews and	late-bed/early-rise; late-	physical activity than early-bed/early-
	between sleep	pedometers.	bed/late-rise.	risers in spite of similar sleep durations.
	patterns and activity.		2.Use of time (screen time,	late-bed/late-risers also had higher BMi
			physical activity, and	z-scores, and were 1.47 times more
			study-related time).	likely to be overweight or obese than
			Multimedia Activity Recall	early-bed/early-rise adolescents; late-
			scale for Children and	bed/late-rise adolescents were more
			Adults used.	likely to come from poorer household.
			Objective physical activity	
			recorded using pedometer	
			for 7 days, and number of	
			daily steps averaged	
			3.sociodemographic	
			characteristics	
			4.weight status: Height,	
			body mass, BMI and waist	
			girth	

Randler	Adols 11–20yrs; to	Cross-sectional study	1.Composite Scale of	784 adols; Older adolescents become
2009	assess the change in	using questionnaires	Morningness	more evening oriented, sleep less, and
Germany	sleep using	with SR measures	2.midpoint of time in bed	have later rise and bedtimes. Age was
	measurements for	and validated tools.	(calculated from rise and	the only significant predictor of
	chronotype, pubertal		bedtimes)	chronotype, whereas age, pubertal
	development, and		3.Pubertal Development	status, and parental monitoring
	parental monitoring.		Scale (SR)	significantly contributed to bedtime
			4.setting of bedtime (e.g.	during the week and sleep length on
			self/parental)	weekdays.
			5.Sleep onset latency	
			6.sleep duration	
			(weekdays, weekends, and	
			average)	

Reither	Adols grades 7–12	Longitudinal study,	1.sleep duration	30,133 adols; no evidence that sleep
2014	(approx. 12–17yrs);	but pooling of data	2.BMI	duration contributes substantially to
USA	To examine	from two phases, so	3.physical development	ethnic disparities in BMI. Sleep duration
	associations between	essentially a cross-	(onset of menses in	is negatively associated with BMI among
	sleep durations and	sectional approach.	females, or voice changes	White, Hispanic and Asian boys,
	BMI. Part of National		in males)	positively associated with BMI among
	Longitudinal Study of		All data based on SR.	Black girls and is not related to BMI
	Adolescent Health.			among Black boys or girls from White,
				Hispanic or Asian ethnic groups.
Reynolds	Males 12–22yrs; to	Prospective study	1.Blood testosterone levels	179 adols; testosterone predicted social
2007	determine whether	starting at age 10–	2.Tanner stage	potency, approval of aggressive/
USA	testosterone level	12yrs; subsequent	(professional ax)	antisocial behaviour; these factors and
	and sexual	follow-up evaluations	3. Social Potency Scale	deviant peer affiliations predicted illicit
	maturation in boys	at 12 to 14yrs, 16,	4.Peer Delinquency Scale	drug use by late adolescence that in turn
	biased non-	19, and 22 years of	5.Perception of Problem	predicted SUD in young adulthood.
	normative behaviour	age (5 data collection	Behaviors Scale	
	potentially leading to	points in total).	6.Drug Use Screening	
	substance use		Inventory	
	disorders (excluding		7.Structured Clinical	
	nicotine and caffeine		Interview for Disorders	
	use disorders),			

Rinker	Adol. and adult rats.	Male Sprague	1.blood alcohol	64 rats (experiment and control); Results
2011	To examine if	Dawley rats were	concentration	suggest that nicotine may alter the
	periadolescent	exposed to either	2.rectal temperature	aversive and physiological effects of
	nicotine exposure	saline or nicotine.	3.locomotor activity	alcohol, regardless of the age at which
	influences the			exposure occurs, possibly increasing its
	aversive effects of			overall reinforcing value and making it
	alcohol.			more likely to be consumed.
Rutters F	Children from birth to	Longitudinal study	1.body composition	101 adols; the FTO A allele (rs9939609)
2011	17yrs; to investigate	from birth to 17yrs;	2.leptin concentrations	is associated with higher BMI, fat mass
Holland	the relationship	this part of study from	3.physical activity, 4.hours	index, and leptin concentrations from the
	between a SNP of	12–17yrs.	watching television	age of 12yr, whereas the associations
	the FTO gene		5.attitude toward eating	show a dip at ages 13–14yr and become
	(rs9939609) and		6.parental characteristics	stronger at age 17 yr.
	obesity-related		7.genomic DNA from blood	
	characteristics during		leukocytes	
	childhood and			
	puberty.			

Rutters	Adols 7–16yrs; to	Longitudinal data	1.Leptin concentrations	98 adols; with progressive Tanner
2010	investigate	from adols yearly	2.BMI	stages, BMI increases and sleep
Holland	associations between	data collection over a	3.PA (Baecke	duration decreases in an interrelated way
	sleep duration and	9yr period.	questionnaire)	independent of possible confounders.
	body-weight.		4.TV hours	
			5.sleep duration (SR)	
			6. polymorphisms of the	
			FTO gene (rs9939609	
			7.Tanner stage	
			8. body composition using	
			the deuterium dilution	
			technique	
			9.parental BMI	

Ruttle	Adols 11–18yrs; to	Longitudinal study,	1.salivary (diurnal) cortisol	Blunted patterns of adolescent cortisol
2013	examine concurrent	with measurements	measured over 3 days	were associated with increased
USA	(i.e., measured at the	taken at 4 time	2.BMI (some SR measures	measures of BMI across adolescence.
	same point in time)	points: age 11, 13,15	used)	Additional analyses using BMI categories
	and longitudinal (i.e.,	and 18yrs.	3.Tanner stage (SR and	revealed that findings may be extended
	using earlier cortisol		parental ax)	beyond BMI scores to predictions of
	measures to predict		4.Pubertal Developmental	obesity.
	later body mass		Scale (mother's ax)	
	index [BMI])		4.MacArthur Health and	
	associations between		Behavior Questionnaire	
	diurnal cortisol and			
	BMI across			
	adolescence.			
Sadeh	Adols 10–11 yrs at	Longitudinal study. 3	1.Petersen's Pubertal	94 adols; after controlling for age,
2009	start of study; to	consecutive annual	Development Scale (SR)	significant relationships found between
Israel	assess the links	assessments of sleep	2.Sexual Maturation Scale	sleep onset, true sleep time, and number
	between sleep and	and pubertal	(SMS) to assess pubertal	of night wakings at Time 1, and pubertal
	pubertal	development. Sleep	development (SR)	ratings at Time 2, and pubertal changes
	development.	was assessed using	3.Actigraphy to assess	from Time 1 to Time 2.
		a week of home	naturalistic sleep pattern	
		actigraphy.		

Sharma &	Adol girls, aged 11–	Cross-sectional data.	1.food consumption	210 girls; more sensitive PTC tasters had
Kaur	18 yrs. To explore		pattern over 24hrs	a low preference for raw vegetables and
2014	the role of TAS2R38		(unstructured	bitter tasting foods, and higher
India	locus in taste		questionnaire)	preference for sweet-tasting foods. PTC
	choices, adolescent		2.4-point hedonic	tasters overtook their PTC non-taster
	growth trend for body		preference scale	counterparts from age 14–16 years in
	height, weight and fat		3.stature (cm)	having higher mean average skinfold,
	patterning among		4.body weight (kg)	percentage body fat, fat mass index and
	girls.		5.four skin-folds (mm)	fat-free mass index.
			(triceps, subscapular,	
			suprailiac and calf)	
			6.BMI	
			7.Body fat (OMRON Body	
			Fat Analyser)	
			8.Basal metabolic rate	
			9.Phenylthiocarba-mide	
			(PTC) tasting ability (serial	
			dilution method)	

Sherar	Adol. girls 8–16yrs.	Cross-sectional study	1.Actical accelerometer	221 adol. girls. Daily mins spent in
2009	To describe the PA	using ecological	readings (for 7 days)	moderate to vigorous PA decreased by
Canada	levels and perceived	approach; different	2.semistructured, open-	40% between grades 4 and 10 (8–
	barriers to PA of	age groups across	ended questionnaire on	16yrs). Within grade groupings, no
	adolescent girls	schools within same	perceived barriers to PA	differences in PA were found between
	grouped by school	area.	over 7 days	early and late maturing girls. Grade 4 to
	grade and maturity		3. Predicted age at peak	6 (8–10yrs) participants cited more
	status.		height velocity	interpersonal/social barriers. Grade 9 to
			4.Age at menarche	10 girls (15–16yrs) cited more
			5.BMI	institutional barriers to PA (e.g. school
			6.Skinfold thickness at five	programmes).
			sites of the body	
			(subscapular, triceps,	
			biceps, iliac crest, and	
			medial calf) to assess body	
			fat	

Sherar	SR examining the	Systematic review.	1.biological maturity	Results are generally inconsistent among
2010	relationship between		2.PA	studies, partly due to variety in ax of
UK,	timing of biological		3.chronological age	biological maturity status and whether it
Canada,	maturity during		4.ethnicity	is SR or clinically assessed; methods
USA	adolescence and PA.		5.Tempo	used to create maturity groups can vary;
			6.sociological factors	maturity homogeneity may not be
				present; small sample sizes are also
				used.
Shochat	Adols, nominally 10–	Systematic review of	PubMed and PsycNET	76 articles included in review. Results
2014	19yrs; to explore the	descriptive evidence	(which is inclusive of	indicate that inadequate sleep is
Israel	consequences of	based on prospective	PsycARTICLES and	associated with negative outcomes in
	inadequate sleep in	and cross-sectional	PsycINFO) electronic	several areas of health and functioning,
	adolescence on	investigations.	databases, covering all	including somatic and psychosocial
	health outcomes.		publications up to	health, school performance and risk
			December 2012.	taking behaviour.

Simon	Adols in first yr of	Cross-sectional data	1.self-report questionnaire	4320 students; more pubertally
2003	secondary school	from longitudinal	on smoking, diet, exercise,	advanced girls had a greater likelihood of
UK	(11–12yrs).	(5yr) Health and	body image, pubertal	having tried smoking, and experiencing
	To examine the	Behaviours in	development, stress,	more stress, but not more psychological
	associations between	Teenagers Study	psychological health, and	difficulties. More pubertally advanced
	puberty and three	(HABITS).	personality	boys had a greater likelihood of having
	important health		2.salivary cotinine levels	tried smoking, a higher intake of high-fat
	behaviours (smoking,		3.height, weight, and waist	food and higher levels of exercise. No
	food intake and		circumference	associations between puberty and either
	exercise) and		4.BMI	stress or psychological difficulties in
	relations with stress		4.Pubertal Development	boys.
	and psychological		Scale (SR)	
	difficulties.			

Sisk	Influence of	Editorial review of 25	Various hormonal and	Our tools are still relatively crude for
2013	hormones on	papers on the	behavioural outcomes.	differentiating in human beings
USA	behaviour during	interplay between		mechanisms that account for links
	puberty and	hormones, brain, and		between behaviour and hormones or
	adolescence.	experience/		pubertal stage, e.g. whether these links
		Behaviour.		reflect hormonally mediated permanent
				changes to brain organization, or the
				activational effects of hormones that are
				influenced by genes and/or experience.

Skidmore	Adols 15–18yrs.	Cross-sectional	1.height and weight	685 adols; no significant relationships
2013	To investigate	survey.	2.fat mass index (FMI) and	were seen between sleep duration and
NZ	relationships		fat-free mass index (FFMI)	any body composition measure but
	between sleep		3.waist circumference and	significant sex interactions were seen.
	duration and multiple		waist-to-height ratio	An hour increase in average nightly
	body composition		(WHtR)	sleep duration in boys only was
	measures in older		4.ethnicity	associated with decreases of 1.2% for
	adolescents and to		5.deprivation	WC, 0.9% for WHtR, 4.5% for FMI and
	investigate if these		6.number of screens in the	1.4% for FFMI. Similar results were seen
	relationships differ		bedroom	for weekday and weekend night sleep
	between boys and		7.fruit and vegetable	duration.
	girls.		consumption	
			8.sleep duration	
Smith	To examine pubertal	Adols 14–17yrs.	1.Guttman-type scale of	The biosocial model indicates that a
1985	development effects	Cross-sectional data	sexual behaviour (self +	simultaneous consideration of pubertal
USA	on sexual behaviour,	from a longitudinal	friends)	development and friend's behaviour
	to determine which	study on early	2.Tanner staging (self ax	provides a different and clearer picture of
	are socially motivated	adolescent sexual	and interviewer ax)	the process than examination of the
	and effects which are	behaviour.		effects separately.
	attributed to			
	biological motivation.			

Spear	Adolescents and	Review of literature	Various outcomes relating	Rodent research has indicated that
2004	alcohol use.	relating to adol	to alcohol use, behaviour	adolescents are more sensitive to
USA		alcohol exposure,	and physical effects.	alcohol effects on brain plasticity; adols
		both in humans and		are also more insensitive to cues that
		rodents.		may moderate alcohol intake.
				Neuorocognitive deficits may be
				apparent years after exposure to excess
				alcohol; however, some neural changes
				are evident prior to alcohol exposure.

Stanis &	Review of factors that	Literature review.	1.developmental stage	A considerable amount is known about
Andersen	influence vulnerability		2.exposure to early life	the functional neuroanatomy and/or
2014	to addiction,		adversity (ranging from	pharmacology of risky behaviours based
USA	including		abuse, neglect, and	on clinical and pre-clinical studies, but
	developmental stage,		bullying)	relatively little has been directly
	exposure to early life		3.drug exposure 4.genetic	translated to reduce their impact on
	adversity (ranging		predisposition	addiction in high-risk children or
	from abuse, neglect,		5.impact on development	teenagers.
	and bullying), drug			
	exposure, and			
	genetic pre-			
	disposition, impact			
	the development of			
	relevant systems.			

Thompson	Adols 9–18yrs.	Longitudinal study,	1.physical activity	138 adols; level of physical activity
2003	To investigate	with biannual or	questionnaire for children	decreased with increasing chronological
Canada	whether observed	triannual data	(PAQ-C) (SR)	age in both sexes. There were no sex
	differences in	collection over 7 yrs.	2.chronological age	differences in the longitudinal pattern of
	physical activity		2.biological age: age at	physical activity when the confounding
	levels in boys and		peak height velocity	effects of biological age were controlled
	girls are confounded		3.Body mass	except at 3yr before peak height velocity.
	by biological age.			
Udry	Adol boys 12–14yrs.	Cross-sectional	1.serum hormone assays	102 boys; free testosterone was a strong
1985	To examine	study.	2.questionnaire data on	predictor of sexual motivation and
USA	hormonal and social		sexual motivation and	behaviour, with no additional contribution
	effects on adolescent		behaviour	of other hormones.
	male sexual		3.Tanner pubertal stage	Including measures of pubertal
	behaviour		(SR)	development and age indicated no
			4.age	additional effects.

Varlinskaya	To examine pubertal-	Literature review of	1.alcohol intake/	Data suggest surprisingly modest
2013	related changes and	laboratory animals	preference	influences of gonadal hormones on
USA	adolescent- or adult-	(rodents) studies.	2.gonadal hormones	alcohol intake, alcohol preference and
	typical behaviours.		3.novelty-seeking	novelty-directed behaviours.
			behaviours	Gonadectomy in males (but not females)
			4.gender	increased ethanol intake in adulthood
			5.pubertal stage	following surgery either pre-pubertally or
				in adulthood, with these increases in
				intake largely reversed by testosterone
				replacement in adulthood.

Vermeersch	Adol. boys, 14–	Part of ADORISK, a	1.Serum levels of	301 adolescent boys; individuals with
2008	15yrs. To examine	larger study on the	testosterone and estradiol	higher levels of testosterone have friends
Belgium	the influence	social and biological	2. Risk taking (SR	that are more involved in risk taking; their
	aggressive risk-	determinants of the	questionnaire)	influence contributes to increased levels
	taking and/or non-	sex gap in	3.Peer associations/	of risk taking. Results indicate that
	aggressive risk-	adolescent risk	behaviours	hormones may influence the
	taking behaviour and	taking. Cross-	4.Tanner stage (physician	development of affiliations with risk-
	the relationship with	sectional data	ax)	taking peers, a factor which is crucial in
	pubertal	reported in this	5.Height	understanding adolescent behaviours.
	development and	paper.	6.Body fat % 7.BP and	
	peer affiliations.		heart rate	
			8.Grip strength	
			9.Waist to hip ratio	
Vetter-	Rat study, examining	Cross-sectional	1.gonadal hormone and	164 male and female rats. Results
O'Hagen	pubertal timing,	study, with data	cortisol levels from blood	suggest that peaks in novelty seeking
2012	hormone levels,	collected at 7 time	samples	behaviour during adolescence was not
USA	genital development,	points.	2.time spent with free-	notably puberty dependent in this rat
	and associations with		choice novelty (cotton wool	population.
	responses to novelty.		ball)	
			3.age	
			4.weight	

Warren &	Adolescent white	Cross-sectional	1.Tanner stage (prof ax)	100 girls. No significant mood or
Brooks-	girls 11–13 yrs.	study. Girls were	2.Blood hormonal assays	behaviour changes were found as a
Gunn	To study the	recruited from a	3. The Youth Behavior	function of pubertal stage, controlling for
1989	relationship among	larger group of girls	Profile	age effects, except for a decrease in
USA	behaviour, mood,	participating in a	4. The Self Image	interest in sports. The hormonal stages
	pubertal	study of female	Questionnaire for Young	revealed a significant curvilinear trend for
	development,	adolescent	Adolescents	depressive affect.
	hormonal levels, and	biopsychosocial	5. scale for interest and	
	psychological	development.	participation in sport	
	functioning.		6. Depressive mood	
			(maternal ax)	

Waylen &	To examine the	Literature review;	1.pubertal stage and timing	Early pubertal onset in boys is likely to
Wolke	biological and social	methods not	2.age	have beneficial effects; in girls
2004	factors that occur at	specified.	3.substance use	precocious pubertal timing may have a
UK	puberty, in an		4.mental health/mood	negative impact on body-image, affect
	attempt to explain		5.social factors	(or emotional wellbeing) and sex-role
	when this transition			expectations. Biological and genetic
	may become			factors may interact with social factors
	problematic.			(e.g. peers, parenting style,
				neighbourhood) making adolescence
				either an adaptive or a challenging
				transition.
Wickel	Adols 9–14yrs; to	Secondary analysis	1.Actigraph accelerometer	161 adols; Levels of moderate-to-
2009	examine physical	of data that were	over 7 consecutive days	vigorous PA were similar between early,
USA	activity levels among	originally collected to	2.Years from peak height	average, and late maturing boys and
	early, average, and	examine the reliability	velocity (as measure of	girls after adjusting for differences in
	late maturing boys	and validity of the	maturity)	chronological age. Levels of MVPA
	and girls.	Youth Media	3.BMI	progressively declined across
		Campaign		chronological age in boys and girls; boys
		Longitudinal Survey.		had higher levels than girls. When
				aligned according to biological age,
				gender-related differences did not exist.
Windle	Adols 10–15yrs.	Review and	1.risk factors: specific and	Nonspecific risk factors include certain
--------	-----------------------	---------------------	------------------------------	---
2009	To examine	discussion: methods	nonspecific	temperamental and personality traits,
USA	nonspecific and	not specified.	2.protective factors	family factors, and non-normative
	alcohol-specific		3.alcohol use	development. Nonspecific protective
	factors that put			factors include certain temperamental
	adolescents at risk			characteristics, religiosity, and parenting
	for, or which protect			factors (e.g. parental nurturance and
	them from, early			monitoring). Among the most influential
	alcohol use and its			alcohol-specific risk and protective
	associated problems.			factors are a family history of alcoholism
				and the influences of siblings and peers,
				all of which shape an adolescent's
				expectancies about the effects of
				alcohol, which in turn help determine
				alcohol use behaviours.

Zimmer-	Adols 16–26 yrs. To	Longitudinal data	1.SR number of sexual	176 adols; adolescents had accumulated
Gembeck &	determine sexual	gathered over 26yrs.	partners from age 16	a higher number of sexual partners by
Collins	partnering from age		onwards	age 16 years when they looked older,
2008	16–26yrs, and to test		2.Physical maturity at	drank alcohol more frequently, and were
USA	whether biological		13yrs (observer ax)	more involved with dating in early to
	and social factors		3.Frequency of alcohol use	middle adolescence. Male gender was
	influenced these		at age 16yrs (SR)	associated with accumulation of sexual
	growth patterns.		4.Romantic relationship	partners more rapidly between ages 16
			history	and 26 years; little indication that the
				accumulation of different sexual partners
				had begun to slow by age 26 for the
				average participant.

Zimmer-	Adols <15yrs to	Analysis of findings	1.Age at first intercourse	35 longitudinal studies. When studies
Gembeck	>18yrs. Review; to	from 35 longitudinal	2.Gender and	were organized by age of participants,
&Helfand	provide a summary of	studies relating to the	race/ethnicity	the onset of intercourse was more
2008	what is known about	onset of heterosexual	3.Pubertal and physical	strongly associated with alcohol use,
USA	the factors that	intercourse.	maturation	delinquency, school problems and (for
	precede and covary		4.Behaviours and attitudes	girls) depressive symptoms following
	with the onset of		(e.g. drug/alcohol use,	sexual intercourse by age 15 than in later
	adolescent sexual		delinquency etc)	years.
	intercourse.		5.Religious behaviour and	
			attitudes	
			6.Mental health	
			7.Self-Esteem, confidence,	
			and autonomy	
			8.Parental factors	
			9.Peer factors	

Abbreviations: SR = systematic review; MA = meta-analysis; Fr = further research; ax = assessed; Q=questionnaire; adols = adolescence/ts; PA = physical activity; HCP = healthcare practitioners; PFC = prefrontal cortex; S-E = socio-economic; SR = self-report.